Summary
A digital watermark is a kind of marker covertly embedded in a noise-tolerant signal such as audio, video or image data. It is typically used to identify ownership of the copyright of such signal. "Watermarking" is the process of hiding digital information in a carrier signal; the hidden information should, but does not need to, contain a relation to the carrier signal. Digital watermarks may be used to verify the authenticity or integrity of the carrier signal or to show the identity of its owners. It is prominently used for tracing copyright infringements and for banknote authentication. Like traditional physical watermarks, digital watermarks are often only perceptible under certain conditions, e.g. after using some algorithm. If a digital watermark distorts the carrier signal in a way that it becomes easily perceivable, it may be considered less effective depending on its purpose. Traditional watermarks may be applied to visible media (like images or video), whereas in digital watermarking, the signal may be audio, pictures, video, texts or 3D models. A signal may carry several different watermarks at the same time. Unlike metadata that is added to the carrier signal, a digital watermark does not change the size of the carrier signal. The needed properties of a digital watermark depend on the use case in which it is applied. For marking media files with copyright information, a digital watermark has to be rather robust against modifications that can be applied to the carrier signal. Instead, if integrity has to be ensured, a fragile watermark would be applied. Both steganography and digital watermarking employ steganographic techniques to embed data covertly in noisy signals. While steganography aims for imperceptibility to human senses, digital watermarking tries to control the robustness as top priority. Since a digital copy of data is the same as the original, digital watermarking is a passive protection tool. It just marks data, but does not degrade it or control access to the data.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.