The globins are a superfamily of heme-containing globular proteins, involved in binding and/or transporting oxygen. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members include myoglobin and hemoglobin. Both of these proteins reversibly bind oxygen via a heme prosthetic group. They are widely distributed in many organisms.
Globin superfamily members share a common three-dimensional fold. This 'globin fold' typically consists of eight alpha helices, although some proteins have additional helix extensions at their termini. Since the globin fold contains only helices, it is classified as an all-alpha protein fold.
The globin fold is found in its namesake globin families as well as in phycocyanins. The globin fold was thus the first protein fold discovered (myoglobin was the first protein whose structure was solved).
The eight helices of the globin fold core share significant nonlocal structure, unlike other structural motifs in which amino acids close to each other in primary sequence are also close in space. The helices pack together at an average angle of about 50 degrees, significantly steeper than other helical packings such as the helix bundle. The exact angle of helix packing depends on the sequence of the protein, because packing is mediated by the sterics and hydrophobic interactions of the amino acid side chains near the helix interfaces.
Globins evolved from a common ancestor and can be divided into three lineages:
Family M (for myoglobin-like) or F (for FHb-like), which has a typical 3/3 fold.
Subfamily FHb, for flavohaemoglobins. Chimeric.
Subfamily SDgb, for single-domain globins (not to be confused with SSDgb).
Family S (for sensor-like), again with a 3/3 fold.
Subfamily GCS, for Globin-coupled sensors. Chimeric.
Subfamily PGb, for protoglobins. Single-domain.
Subfamily SSDgb, for sensor single-domain globins.
Family T (for truncated), with a 2/2 fold All subfamilies can be chimeric, single-domain, or tandemly linked.
Subfamily TrHb1 (also T1 or N).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
A protein family is a group of evolutionarily related proteins. In many cases, a protein family has a corresponding gene family, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be confused with family as it is used in taxonomy. Proteins in a family descend from a common ancestor and typically have similar three-dimensional structures, functions, and significant sequence similarity.
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal (or lateral) gene transfer event (xenologs). Homology among DNA, RNA, or proteins is typically inferred from their nucleotide or amino acid sequence similarity.
Carboxyhemoglobin (carboxyhaemoglobin BrE) (symbol COHb or HbCO) is a stable complex of carbon monoxide and hemoglobin (Hb) that forms in red blood cells upon contact with carbon monoxide. Carboxyhemoglobin is often mistaken for the compound formed by the combination of carbon dioxide (carboxyl) and hemoglobin, which is actually carbaminohemoglobin. Carboxyhemoglobin terminology emerged when carbon monoxide was known by its historic name, "carbonic oxide", and evolved through Germanic and British English etymological influences; the preferred IUPAC nomenclature is carbonylhemoglobin.
Background: Testing the hypoxic ventilatory response (HVR) at low-altitude helps to detect those who do not hyperventilate appropriately in hypoxia but might not necessarily predict the HVR and the risk to develop acute mountain sickness (AMS) at high alti ...
Protein drugs have great potential as targeted therapies, yet their application suffers from several drawbacks, such as instability, short half-life, and adverse immune responses. Thus, protein delivery approaches based on stimuli-responsive nanocarriers c ...
WILEY-V C H VERLAG GMBH2019
, , , ,
Understanding the interplay between protein function and dynamics is currently one of the fundamental challenges of physical biology. Recently, a method using variable temperature solid-state nuclear magnetic resonance relaxation measurements has been prop ...