Carbon nanobudIn nanotechnology, a carbon nanobud is a material that combines carbon nanotubes and spheroidal fullerenes, both allotropes of carbon, forming "buds" attached to the tubes. Carbon nanobuds were discovered and synthesized in 2006. In this material, fullerenes are bonded with covalent bonds to the outer sidewalls of the underlying nanotube. Consequently, nanobuds exhibit properties of carbon nanotubes and fullerenes. The mechanical properties and the electrical conductivity of the nanobuds are similar to those of carbon nanotubes.
Carbon blackCarbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of coal and coal tar, vegetable matter, or petroleum products, including fuel oil, fluid catalytic cracking tar, and ethylene cracking in a limited supply of air. Carbon black is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon.
Zintl phaseIn chemistry, a Zintl phase is a product of a reaction between a group 1 (alkali metal) or group 2 (alkaline earth metal) and main group metal or metalloid (from groups 13, 14, 15, or 16). It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors. This type of solid is named after German chemist Eduard Zintl who investigated them in the 1930s.