In mechanics, the normal force is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance normal is used in the geometric sense and means perpendicular, as opposed to the common language use of normal meaning "ordinary" or "expected". A person standing still on a platform is acted upon by gravity, which would pull them down towards the Earth's core unless there were a countervailing force from the resistance of the platform's molecules, a force which is named the "normal force".
The normal force is one type of ground reaction force. If the person stands on a slope and does not sink into the ground or slide downhill, the total ground reaction force can be divided into two components: a normal force perpendicular to the ground and a frictional force parallel to the ground. In another common situation, if an object hits a surface with some speed, and the surface can withstand the impact, the normal force provides for a rapid deceleration, which will depend on the flexibility of the surface and the object.
In the case of an object resting upon a flat table (unlike on an incline as in Figures 1 and 2), the normal force on the object is equal but in opposite direction to the gravitational force applied on the object (or the weight of the object), that is, , where m is mass, and g is the gravitational field strength (about 9.81 m/s2 on Earth). The normal force here represents the force applied by the table against the object that prevents it from sinking through the table and requires that the table be sturdy enough to deliver this normal force without breaking. However, it is easy to assume that the normal force and weight are action-reaction force pairs (a common mistake). In this case, the normal force and weight need to be equal in magnitude to explain why there is no upward acceleration of the object. For example, a ball that bounces upwards accelerates upwards because the normal force acting on the ball is larger in magnitude than the weight of the ball.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet de maitriser les aspects fondamentaux et pratiques du dimensionnement des structures en acier. Il traite des poutres, des poteaux, des assemblages, des cadres, des systèmes porteurs et
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. The third law is also more generally stated as: "To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts." The attribution of which of the two forces is the action and which is the reaction is arbitrary.
In physics and engineering, a free body diagram (FBD; also called a force diagram) is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies). The body may consist of multiple internal members (such as a truss), or be a compact body (such as a beam). A series of free bodies and other diagrams may be necessary to solve complex problems.
In physics, a body force is a force that acts throughout the volume of a body. Forces due to gravity, electric fields and magnetic fields are examples of body forces. Body forces contrast with contact forces or surface forces which are exerted to the surface of an object. Normal forces and shear forces between objects are surface forces as they are exerted to the surface of an object. All cohesive surface attraction and contact forces between objects are also considered as surface forces.
Offshore pipelines that transport hydrocarbons under high pressure and high temperature are usually thermally insulated to maintain an elevated temperature and prevent any heat loss to the surroundings. However, the temperatures at the outer-wall of the pi ...
AMER SOC CIVIL ENGINEERS2023
Monolithic integrated circuits (ICs) have been miniaturized over the past five decades, and today their components range in size from hundreds of microns to several nanometers. Making point contact with electrical samples under a microscope is referred to ...
In this thesis several advances are made to the emerging field of 3D printed mechanical sensors. Techniques and processes were developed to enable the integration of highly conductive, and capacitive and piezoresistive sensing features embedded within 3D p ...