A vector monitor, vector display, or calligraphic display is a display device used for computer graphics up through the 1970s. It is a type of CRT, similar to that of an early oscilloscope. In a vector display, the image is composed of drawn lines rather than a grid of glowing pixels as in raster graphics. The electron beam follows an arbitrary path, tracing the connected sloped lines rather than following the same horizontal raster path for all images. The beam skips over dark areas of the image without visiting their points.
Some refresh vector displays use a normal phosphor that fades rapidly and needs constant refreshing 30-40 times per second to show a stable image. These displays, such as the Imlac PDS-1, require some local refresh memory to hold the vector endpoint data. Other storage tube displays, such as the popular Tektronix 4010, use a special phosphor that continues glowing for many minutes. Storage displays do not require any local memory. In the 1970s, both types of vector displays were much more affordable than bitmap raster graphics displays when megapixel computer memory was still very expensive. Today, raster displays have replaced nearly all uses of vector displays.
Vector displays do not suffer from the display artifacts of aliasing and pixelation—especially black and white displays; color displays keep some artifacts due to their discrete nature—but they are limited to displaying only a shape's outline (although advanced vector systems can provide a limited amount of shading). Text is crudely drawn from short strokes. Refresh vector displays are limited in how many lines or how much text can be shown without refresh flicker. Irregular beam motion is slower than steady beam motion of raster displays. Beam deflections are typically driven by magnetic coils, and those coils resist rapid changes to their current.
Vector graphic displays were first used in 1958 by the US SAGE air defense system.
In 1963, Ivan Sutherland at MIT first used a vector graphic display for Sketchpad, his pioneering CAD program.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
Printing with custom inks is of interest both for artistic purposes and for printing security documents such as banknotes. However, in order to create designs with only a few custom inks, a general purpose high-quality gamut reduction technique is needed. ...
2003
,
Printing with custom inks is of interest both for artistic purposes and for printing security documents such as banknotes. However, in order to create designs with only a few custom inks, a general purpose high-quality gamut reduction technique is needed. ...