Concept

Liquid rocket propellant

Summary
The highest specific impulse chemical rockets use liquid propellants (liquid-propellant rockets). They can consist of a single chemical (a monopropellant) or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source. About 170 different propellants made of liquid fuel have been tested, excluding minor changes to a specific propellant such as propellant additives, corrosion inhibitors, or stabilizers. In the U.S. alone at least 25 different propellant combinations have been flown. Many factors go into choosing a propellant for a liquid-propellant rocket engine. The primary factors include ease of operation, cost, hazards/environment and performance. Konstantin Tsiolkovsky proposed the use of liquid propellants in 1903, in his article Exploration of Outer Space by Means of Rocket Devices. On March 16, 1926, Robert H. Goddard used liquid oxygen (LOX) and gasoline as rocket fuels for his first partially successful liquid-propellant rocket launch. Both propellants are readily available, cheap and highly energetic. Oxygen is a moderate cryogen as air will not liquefy against a liquid oxygen tank, so it is possible to store LOX briefly in a rocket without excessive insulation. In Germany, engineers and scientists became enthralled with liquid propulsion, building and testing them in the late 1920s within Opel RAK in Rüsselsheim. According to Max Valier's account, Opel RAK rocket designer Friedrich Wilhelm Sander launched two liquid-fuel rockets at Opel Rennbahn in Rüsselsheim on April 10 and April 12, 1929. These Opel RAK rockets were the first European, and after Goddard the world's second, liquid-fuel rockets in history. In his book Raketenfahrt, Valier gives the size of the rockets as 21 cm in diameter and 74 cm in length, weighing 7 kg empty and 16 kg with fuel. The maximum thrust was 45 to 50 kilogram-force (kgf), with a total burning time of 132 seconds.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.