Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Christian EnzChristian C. Enz (M84, S'12) received the M.S. and Ph.D. degrees in Electrical Engineering from the EPFL in 1984 and 1989 respectively. From 1984 to 1989 he was research assistant at the EPFL, working in the field of micro-power analog IC design. In 1989 he was one of the founders of Smart Silicon Systems S.A. (S3), where he developed several low-noise and low-power ICs, mainly for high energy physics applications. From 1992 to 1997, he was an Assistant Professor at EPFL, working in the field of low-power analog CMOS and BiCMOS IC design and device modeling. From 1997 to 1999, he was Principal Senior Engineer at Conexant (formerly Rockwell Semiconductor Systems), Newport Beach, CA, where he was responsible for the modeling and characterization of MOS transistors for the design of RF CMOS circuits. In 1999, he joined the Swiss Center for Electronics and Microtechnology (CSEM) where he launched and lead the RF and Analog IC Design group. In 2000, he was promoted Vice President, heading the Microelectronics Department, which became the Integrated and Wireless Systems Division in 2009. He joined the EPFL as full professor in 2013, where he is currently the director of the Institute of Microengineering (IMT) and head of the Integrated Circuits Laboratory (ICLAB).He is lecturing and supervising undergraduate and graduate students in the field of Analog and RF IC Design at EPFL. His technical interests and expertise are in the field of very low-power analog and RF IC design, semiconductor device modeling, and inexact and error tolerant circuits and systems.He has published more than 200 scientific papers and has contributed to numerous conference presentations and advanced engineering courses. Together with E. Vittoz and F. Krummenacher he is one of the developer of the EKV MOS transistor model and the author of the book "Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design" (Wiley, 2006). He has been member of several technical program committees, including the International Solid-State Circuits Conference (ISSCC) and European Solid-State Circuits Conference (ESSCIRC). He has served as a vice-chair for the 2000 International Symposium on Low Power Electronics and Design (ISLPED), exhibit chair for the 2000 International Symposium on Circuits and Systems (ISCAS) and chair of the technical program committee for the 2006 European Solid-State Circuits Conference (ESSCIRC). Since 2012 he has been elected as member of the IEEE Solid-State Circuits Society (SSCS) Administrative Commmittee (AdCom). He is also Chair of the IEEE SSCS Chapter of Switzerland.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Mihai Adrian IonescuAdrian M. Ionescu is Full Professor at the Swiss Federal Institute of Technology, Lausanne, Switzerland. He received the B.S./M.S. and Ph.D. degrees from the Polytechnic Institute of Bucharest, Romania and the National Polytechnic Institute of Grenoble, France, in 1989 and 1997, respectively. He has held staff and/or visiting positions at LETI-CEA, Grenoble, France and INP Grenoble, France and Stanford University, USA, in 1998 and 1999. Dr. Ionescu has published more than 600 articles in international journals and conferences. He received many Best Paper Awards in international conferences, the Annual Award of the Technical Section of the Romanian Academy of Sciences in 1994 and the Blondel Medal in 2009 for contributions to the progress in engineering sciences in the domain of electronics. He is the 2013 recipient of the IBM Faculty Award in Engineering. He served the IEDM and VLSI conference technical committees and was the Technical Program Committee (Co)Chair of ESSDERC in 2006 and 2013. He is a member of the SATW. He is director of the Laboratory of Micro/Nanoelectronic Devices (NANOLAB).
Edoardo CharbonEdoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Luis Guillermo Villanueva TorrijoGuillermo Villanueva is a Tenure Track Assistant Professor at the Ecole Polytechnique Federale de Lausane (EPFL), Switzerland, in the Mechanical Engineering Institute (IGM). Before joining EPFL he was a Marie Curie post-doctoral scholar at DTU (Denmark) and Caltech (California, US); and before a post-doc at EPFL-LMIS1. He received his M.Sc. in Physics in Zaragoza (Spain) and his PhD from the UAB in Barcelona (Spain).
Since the start of his PhD (2002), Prof. Villanueva has been active in the fields of NEMS/MEMS for sensing, having expertise from the design and fabrication to the characterization and applicability. He has co-authored more than 75 papers in peer-reviewed journals (h-index of 24 WoK, 32 GoS) and more than 100 contributions to international conferences.
He is serving, or has served, on the program committees of IEEE-NEMS, IEEE-Sensors, MNE, IEEE-FCS and Transducers. He is editor of Microelectronic Engineering. He has co-organized MNE2014 and SNC2015; and he is currently co-organizing the short courses at Transducers 2019 and the 16th International Workshop on Nanomechanical Sensors (NMC2019).
Pierre-André FarinePierre-André Farine received the Doctoral and Engineering Degrees in Microtechnology from University of Neuchâtel, Switzerland, respectively in 1984 and 1978, and the Engineering in Microtechnology from ETS Le Locle in 1974.
He was working 17 years for the Swiss watch industries (Swatch Group), including developments for high-tech products, such as pager watches, watches including integrated sensors such as pressure, compass, altimeter and temperature sensors for Tissot. He was also involved in prototypes developments for watches including GPS and cellular GSM phones.
Since 8 years, he is Professor in Electronics and Signal Processing at the Institute of Microtechnology IMT, University of Neuchâtel, Switzerland. Full professor at EPFL since January 1st, 2009, he works in the field of low-power integrated products for portable devices, including microelectronics for wireless telecommunications, UWB and GNSS systems. He is Head of the Electronics and Signal Processing Laboratory ESPLAB of the EPFL IMT-NE. His laboratory works also for video and audio compression algorithms and their implementation in low power integrated circuits.
Kyojin ChooProfessor Kyojin Choo received his B.S. and M.S. degree in electrical engineering from Seoul National University, Seoul, Korea, in 2007 and 2009, respectively. In 2018, he received his Ph.D. degree at the University of Michigan, Ann Arbor, MI, USA.
From 2009 to 2013, he was with Image Sensor Development Team of Samsung Electronics, Yong-In, Korea, where he designed signal readout chains for mobile/DSLR image sensors. From 2018 to 2021, he was with University of Michigan, Ann Arbor, MI, USA, as a Post-Doctoral Research Fellow, and he recently joined Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, as an Assistant Professor. He holds more than 20 US patents and his research interests include charge-domain circuits, sensor interfaces, energy converters, high-speed links/timing generators, and millimeter-scale integrated systems.
Catherine DehollainShe got the Master Degree in Electrical Engineering in 1982 from EPFL. Then, she worked in Geneva up to 1990 as a Senior Design Engineer in telecommunications at the European research center of Motorola. From 1990 up to 1995, she did her PhD thesis at the Chaire des Circuits et Systemes at EPFL in the domain of impedance broadband matching circuits. Since 1995, she is responsible at EPFL for the RFIC group. She has participated to different Swiss research projects as well as European projects dedicated to data communication of sensors nodes (e.g. MuMoR, Minami European projects) as well as remote powering of sensor nodes. Her main domains of interest are telecom applications (e.g. Impulse radio Ultra-Wide Band, super-regenerative receivers, RFIDs)as well as biomedical applications. She has been the coordinator of European projects (e.g. FP6 SUPREGE, FP7 Ultrasponder)and of Swiss projects (e.g. CAPED CTI project, NEURO-IC SNF project).
Drazen DujicDrazen Dujic is an Associate Professor and Head of the Power Electronics Laboratory at EPFL. He received the Dipl.Ing. and MSc degrees from the University of Novi Sad, Serbia in 2002 and 2005, respectively, and the PhD degree from Liverpool John Moores University, UK in 2008. From 2003 to 2006, he was a Research Assistant with the Faculty of Technical Sciences at University of Novi Sad. From 2006 to 2009, he was a Research Associate with Liverpool John Moores University. After that he moved to industry and joined ABB Switzerland Ltd, where from 2009 to 2013, he was Scientist and then Principal Scientist with ABB Corporate Research Center in Baden-Dättwil, and from 2013 to 2014 he was R&D Platform Manager with ABB Medium Voltage Drives in Turgi. He joined EPFL in 2014 as Tenure Track Assistant Professor and was promoted to Associate Professor in 2021. His research interests include the areas of design and control of advanced high power electronic systems and high-performance drives, predominantly for the medium voltage applications related to electrical energy generation, conversion and storage. He has authored or coauthored more than 150 scientific publications and has filed 16 patents. In 2018 he received EPE Outstanding Service Award from European Power Electronics and Drives Association and in 2014 the Isao Takahashi Power Electronics Award for Outstanding Achievement in Power Electronics. He is Senior Member of IEEE, and serves as Associate Editor for IEEE Transactions on Power Electronics, IEEE Transactions on Industrial Electronics and IET Electric Power Applications. He is Chairman of the Swiss IEEE Power Electronics Society (PELS) Chapter and IEEE PELS R8 Chair.