In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.
The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches. The vertex figure of ki,j is (k − 1)i,j, and each of its facets are represented by subtracting one from one of the nonzero subscripts, i.e. ki − 1,j and ki,j − 1.
Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.
Coxeter named these figures as ki,j (or kij) in shorthand and gave credit of their discovery to Gosset and Elte:
Thorold Gosset first published a list of regular and semi-regular figures in space of n dimensions in 1900, enumerating polytopes with one or more types of regular polytope faces. This included the rectified 5-cell 021 in 4-space, demipenteract 121 in 5-space, 221 in 6-space, 321 in 7-space, 421 in 8-space, and 521 infinite tessellation in 8-space.
E. L. Elte independently enumerated a different semiregular list in his 1912 book, The Semiregular Polytopes of the Hyperspaces. He called them semiregular polytopes of the first kind, limiting his search to one or two types of regular or semiregular k-faces.
Elte's enumeration included all the kij polytopes except for the 142 which has 3 types of 6-faces.
The set of figures extend into honeycombs of (2,2,2), (3,3,1), and (5,4,1) families in 6,7,8 dimensional Euclidean spaces respectively. Gosset's list included the 521 honeycomb as the only semiregular one in his definition.
The polytopes and honeycombs in this family can be seen within ADE classification.
A finite polytope kij exists if
or equal for Euclidean honeycombs, and less for hyperbolic honeycombs.