Concept

Super-Earth

Summary
A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term. In general, super-Earths are defined by their masses, and the term does not imply temperatures, compositions, orbital properties, habitability, or environments. While sources generally agree on an upper bound of 10 Earth masses (~69% of the mass of Uranus, which is the Solar System's giant planet with the least mass), the lower bound varies from 1 or 1.9 to 5, with various other definitions appearing in the popular media. The term "super-Earth" is also used by astronomers to refer to planets bigger than Earth-like planets (from 0.8 to 1.2 Earth-radius), but smaller than mini-Neptunes (from 2 to 4 Earth-radii). This definition was made by the Kepler space telescope personnel. Some authors further suggest that the term Super-Earth might be limited to rocky planets without a significant atmosphere, or planets that have not just atmospheres but also solid surfaces or oceans with a sharp boundary between liquid and atmosphere, which the four giant planets in the Solar System do not have. Planets above 10 Earth masses are termed massive solid planets, mega-Earths, or gas giant planets, depending on whether they are mostly rock and ice or mostly gas. The first super-Earths were discovered by Aleksander Wolszczan and Dale Frail around the pulsar PSR B1257+12 in 1992. The two outer planets (Poltergeist and Phobetor) of the system have masses approximately four times Earth—too small to be gas giants. The first super-Earth around a main-sequence star was discovered by a team under Eugenio Rivera in 2005.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood