Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.
In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers h, k, and l, the Miller indices. They are written (hkl), and denote the family of (parallel) lattice planes (of the given Bravais lattice) orthogonal to , where are the basis or primitive translation vectors of the reciprocal lattice for the given Bravais lattice. (Note that the plane is not always orthogonal to the linear combination of direct or original lattice vectors because the direct lattice vectors need not be mutually orthogonal.) This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave are coincident with parallel lattice planes of the original lattice. Since a measured scattering vector in X-ray crystallography, with as the outgoing (scattered from a crystal lattice) X-ray wavevector and as the incoming (toward the crystal lattice) X-ray wavevector, is equal to a reciprocal lattice vector as stated by the Laue equations, the measured scattered X-ray peak at each measured scattering vector is marked by Miller indices. By convention, negative integers are written with a bar, as in for −3. The integers are usually written in lowest terms, i.e. their greatest common divisor should be 1. Miller indices are also used to designate reflections in X-ray crystallography. In this case the integers are not necessarily in lowest terms, and can be thought of as corresponding to planes spaced such that the reflections from adjacent planes would have a phase difference of exactly one wavelength (2pi), regardless of whether there are atoms on all these planes or not.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has only one lattice constant, the distance between atoms, but in general lattices in three dimensions have six lattice constants: the lengths a, b, and c of the three cell edges meeting at a vertex, and the angles α, β, and γ between those edges.
In physics, the reciprocal lattice represents the Fourier transform of another lattice. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system (usually a Bravais lattice). The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, where refers to the wavevector. In quantum physics, reciprocal space is closely related to momentum space according to the proportionality , where is the momentum vector and is the reduced Planck constant.
In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of these crystals: Primitive cubic (abbreviated cP and alternatively called simple cubic) Body-centered cubic (abbreviated cI or bcc) Face-centered cubic (abbreviated cF or fcc) Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals.
Covers the fundamentals of electron diffraction and its applications in understanding crystal structures and symmetry, including lattice vectors, lattice planes, and dark-field imaging techniques.
Explores crystal structures, Miller indices, X-ray diffraction, and solid microstructures.
Covers electron diffraction theory, Bragg's law, reciprocal lattice, Ewald sphere, and weak-beam dark-field imaging.
,
One-dimensional materials have gained much attention in the last decades: from carbon nanotubes to ultrathin nanowires to few-atom atomic chains, these can all display unique electronic properties and great potential for next-generation applications. Exfol ...
Orthorhombic molybdenum trioxide (alpha-MoO3), a newly discovered polaritonic van der Waals crystal, is attracting significant attention due to its strongly anisotropic mid-infrared phonon-polaritons. At the same time, coupling of polariton with its mirror ...
WILEY-V C H VERLAG GMBH2022
, , , ,
In this work we perform a neutron Bragg edge tomography of stainless steel 316L additive manufacturing samples, one as built via standard laser powder bed fusion, and one using the novel three-dimensional (3D) laser shock peening technique. First, we consi ...