Résumé
Les indices de Miller ou de Miller-Bravais sont une manière de désigner l'orientation des plans cristallins dans un cristal. On utilise des indices similaires pour désigner les directions dans un cristal, les indices de direction. Un cristal est un empilement ordonné d'atomes, d'ions ou de molécules, appelés ci-après « motifs ». La périodicité du motif est exprimée par un réseau constitué de nœuds qui représentent les sommets de la maille. Les arêtes de la maille élémentaire définissent les vecteurs de la base. Les plans définis par trois nœuds du réseau, et les directions définies par deux nœuds du réseau sont qualifiés de « nodaux » (plan nodal, direction nodale) ou mieux encore « réticulaires ». Une direction réticulaire est aussi dite rangée. En métallurgie, on travaille fréquemment avec des cristaux constitués d'un seul type d'atomes ; on parle donc de « plan atomique », de « direction atomique » ou de « rangée d'atomes », mais ce ne sont que des cas particuliers. Le cristal n'étant pas isotrope, il n'y a pas de raison que ses propriétés le soient. Les lignes et plans de grande densité vont présenter des propriétés particulières : optiques : la propagation d'une onde lumineuse dans le cristal (réfraction) se fait par diffusion Rayleigh de proche en proche, entre les atomes ; la vitesse de propagation peut donc différer selon la densité de la direction, ce qui peut induire le phénomène de biréfringence ; liées à la tension superficielle : si le matériau se condense sous la forme d'un cristal, c'est qu'un motif est plus stable lorsqu'il est entouré d'autres motifs ; propagation d'une fissure et plan de clivage : les motifs d'une surface libre sont exposés à l'air ; la surface libre est plus stable si elle correspond à un plan de grande densité, car alors chaque motif est entouré d'un maximum de motifs ; forme d'un pore, pour la même raison que ci-dessus ; adsorption et réactivité : le nombre de sites d'adsorption, et donc la réactivité chimique, dépend de la densité d'atomes ; dislocations : le cœur d'une dislocation va plus s'étendre dans un plan dense, cela réduit le frottement lors du déplacement de la dislocation (force de Peierls-Nabarro au cours de la déformation plastique) ; les glissements se font donc préférentiellement selon des plans denses ; la perturbation que représente une dislocation (vecteur de Burgers) est une direction dense : en effet, un décalage d'un motif dans une direction dense représente une distorsion faible (les motifs étant rapprochés) ; la ligne d'une dislocation va également tendre à être une direction dense, afin de diminuer la tension de ligne (une boucle de dislocation aura donc tendance à être un polygone).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.