Agent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. In corresponding agent-based models, the "agents" are "computational objects modeled as interacting according to rules" over space and time, not real people. The rules are formulated to model behavior and social interactions based on incentives and information. Such rules could also be the result of optimization, realized through use of AI methods (such as Q-learning and other reinforcement learning techniques).
The theoretical assumption of mathematical optimization by agents in equilibrium is replaced by the less restrictive postulate of agents with bounded rationality adapting to market forces. ACE models apply numerical methods of analysis to computer-based simulations of complex dynamic problems for which more conventional methods, such as theorem formulation, may not find ready use. Starting from initial conditions specified by the modeler, the computational economy evolves over time as its constituent agents repeatedly interact with each other, including learning from interactions. In these respects, ACE has been characterized as a bottom-up culture-dish approach to the study of economic systems.
ACE has a similarity to, and overlap with, game theory as an agent-based method for modeling social interactions. But practitioners have also noted differences from standard methods, for example in ACE events modeled being driven solely by initial conditions, whether or not equilibria exist or are computationally tractable, and in the modeling facilitation of agent autonomy and learning.
The method has benefited from continuing improvements in modeling techniques of computer science and increased computer capabilities. The ultimate scientific objective of the method is to "test theoretical findings against real-world data in ways that permit empirically supported theories to cumulate over time, with each researcher’s work building appropriately on the work that has gone before.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mainly based on the discussion of peer reviewed academic papers, the course introduces non economists to the main types of applied models used in environmental economic analysis: linear programming, p
Ce cours cherche à donner, en matière économique, les outils juridiques aux fins d'analyser une situation de fait et de déterminer les règles légales applicables.
Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by prog
On computational active vision explores classic vision theories, ecological vision, dataset usage, and the Gibson Environment.
Explores ecological vision and computational agent design in the context of visual perception and behavior.
Explores applications of autonomous agents in UAVs, air traffic management, and logistics, focusing on MAS interactions and adaptive transportation networks.
Computational Economics is an interdisciplinary research discipline that involves computer science, economics, and management science. This subject encompasses computational modeling of economic systems. Some of these areas are unique, while others established areas of economics by allowing robust data analytics and solutions of problems that would be arduous to research without computers and associated numerical methods.
In economic theory and econometrics, the term heterogeneity refers to differences across the units being studied. For example, a macroeconomic model in which consumers are assumed to differ from one another is said to have heterogeneous agents. In econometrics, statistical inferences may be erroneous if, in addition to the observed variables under study, there exist other relevant variables that are unobserved, but correlated with the observed variables; dependent and independent variables .
In economics, an agent is an actor (more specifically, a decision maker) in a model of some aspect of the economy. Typically, every agent makes decisions by solving a well- or ill-defined optimization or choice problem. For example, buyers (consumers) and sellers (producers) are two common types of agents in partial equilibrium models of a single market. Macroeconomic models, especially dynamic stochastic general equilibrium models that are explicitly based on microfoundations, often distinguish households, firms, and governments or central banks as the main types of agents in the economy.
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
2024
, , ,
In Proton Exchange Membrane Fuel Cells (PEMFCs), the presence of residual water within the Gas Diffusion Layer (GDL) poses challenges during cold starts and accelerates degradation. A computational model based on the Lattice Boltzmann Method (LBM) was deve ...
Nature Portfolio2024
, , , , ,
Integrating low-power wearable systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-perfor ...