The Z4 was arguably the world's first commercial digital computer, and is the oldest surviving programmable computer. It was designed, and manufactured by early computer scientist Konrad Zuse's company Zuse Apparatebau, for an order placed by Henschel & Son, in 1942; though only partially assembled in Berlin, then completed in Göttingen, and not delivered before the defeat of Nazi Germany, in 1945. The Z4 was Zuse's final target for the Z3 design. Like the earlier Z2, it comprised a combination of mechanical memory and electromechanical logic, so was not a true electronic computer.
The Z4 was very similar to the Z3 in its design but was significantly enhanced in a number of respects. The memory consisted of 32-bit rather than 22-bit floating point words. The Program Construction Unit (Planfertigungsteil) punched the program tapes, making programming and correcting programs for the machine much easier by the use of symbolic operations and memory cells. Numbers were entered and output as decimal floating-point even though the internal working was in binary. The machine had a large repertoire of instructions including square root, MAX, MIN and sine. Conditional tests included tests for infinity. When delivered to ETH Zurich in 1950 the machine had a conditional branch facility added and could print on a Mercedes typewriter. There were two program tapes where the second could be used to hold a subroutine. (Originally six were planned.)
In 1944, Zuse was working on the Z4 with around two dozen people, including Wilfried de Beauclair. Some engineers who worked at the telecommunications facility of the OKW also worked for Zuse as a secondary occupation. Also in 1944 Zuse transformed his company to the Zuse KG (Kommanditgesellschaft, i.e. a limited partnership) and planned to manufacture 300 computers. This way he could also request additional staff and scientists as a contractor in the Emergency Fighter Program. Zuse's company also cooperated with Alwin Walther's Institute for Applied Mathematics at the Technical University of Darmstadt.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
A mechanical computer is a computer built from mechanical components such as levers and gears rather than electronic components. The most common examples are adding machines and mechanical counters, which use the turning of gears to increment output displays. More complex examples could carry out multiplication and division—Friden used a moving head which paused at each column—and even differential analysis. One model, the Ascota 170 accounting machine sold in the 1960s calculated square roots.
The Z1 was a motor-driven mechanical computer designed by Konrad Zuse from 1936 to 1937, which he built in his parents' home from 1936 to 1938. It was a binary electrically driven mechanical calculator with limited programmability, reading instructions from punched celluloid film. The “Z1” was the first freely programmable computer in the world that used Boolean logic and binary floating-point numbers, however, it was unreliable in operation. It was completed in 1938 and financed completely by private funds.
This paper outlines the theoretical background of the punching shear provisions implemented in the fib Model Code 2010 and presents a practical example of its applica tion. It is the aim to explain the mechanical model that forms the basis of the punching ...