Concept

Electroanalytical methods

Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The four main categories are potentiometry (the difference in electrode potentials is measured), amperometry (electric current is the analytical signal), coulometry (charge passed during a certain time is recorded), and voltammetry (the cell's current is measured while actively altering the cell's potential). Potentiometry passively measures the potential of a solution between two electrodes, affecting the solution very little in the process. One electrode is called the reference electrode and has a constant potential, while the other one is an indicator electrode whose potential changes with the sample's composition. Therefore, the difference in potential between the two electrodes gives an assessment of the sample's composition. In fact, since the potentiometric measurement is a non-destructive measurement, assuming that the electrode is in equilibrium with the solution, we are measuring the solution's potential. Potentiometry usually uses indicator electrodes made selectively sensitive to the ion of interest, such as fluoride in fluoride selective electrodes, so that the potential solely depends on the activity of this ion of interest. The time that takes the electrode to establish equilibrium with the solution will affect the sensitivity or accuracy of the measurement. In aquatic environments, platinum is often used due to its high electron transfer kinetics, although an electrode made from several metals can be used in order to enhance the electron transfer kinetics. The most common potentiometric electrode is by far the glass-membrane electrode used in a pH meter. A variant of potentiometry is chronopotentiometry which consists in using a constant current and measurement of potential as a function of time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CH-108(a): Chemistry Laboratory Work I
Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative. TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le c
MSE-441: Electrochemistry for materials technology
This course aims at familiarizing the student with state of the art applications of electrochemistry in materials science and technology as well as material requirements for electrochemical engineerin
CH-243: Electrochemistry of solutions
Les étudiants intègrent les notions de potentiels électriques, de niveau de Fermi de l'électron et appliquent l'équation de Nernst. Ils comprennent la structure d'une interface électrifiée. Les généra
Show more
Related lectures (6)
Electrochemical Sensing
Explores electrochemical biosensors, amperometry, glucose sensors, enzymatic biosensors, mediators, cyclic voltammetry, and electrochemiluminescence in biosensors.
Biosensors: Electrode Technology
Explores electrode technology for biosensors, covering Ag/AgCl reference electrodes, voltammetry, conductometry, and enzyme immobilization techniques.
Neural Electrodes: Stimulation and Safety
Explores neural stimulation with electrodes, discussing current flow effects, charge injection challenges, and electrode material properties.
Show more
Related publications (62)

Revealing fundamentals of charge extraction in photovoltaic devices through potentiostatic photoluminescence imaging

Michael Graetzel, Shaik Mohammed Zakeeruddin, Yuhang Liu, Dmitry Bogachuk

The photocurrent density-voltage (J(V)) curve is the fundamental characteristic to assess opto-electronic devices, in particular solar cells. However, it only yields information on the performance inte-grated over the entire active device area. Here, a met ...
ELSEVIER2022

Vanadium‐manganese redox flow battery: Study of Mn(III) disproportionation in the presence of other metallic ions.

Hubert Girault, Pekka Eero Peljo, Sunny Isaïe Maye, Danick Reynard, Solène Cindy Gentil, Vimanshu Chanda

The Mn(III)/Mn(II) redox couple with a standard potential of +1.51 V vs . SHE has drawn interest for the design of V/Mn redox flow battery (RFB). However, Mn(III) disproportionation leads to a loss of capacity, an increase of pressure drop and electrode pa ...
Wiley2020

Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimer-captosuccinic Acid-Capped Fe3O4 Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine

Hubert Girault, Andreas Stephan Lesch, Milica Jovic

Here we report the design of a disposable single-drop voltammetric sensor for the quantitative determination of antipsy-chotic drug trifluoperazine (TFP). The sensor was build using inkjet-printed carbon nanotube (CNT) electrodes which were modified with d ...
2020
Show more
Related concepts (7)
Electrochemical reaction mechanism
In electrochemistry, an electrochemical reaction mechanism is the step-by-step sequence of elementary steps, involving at least one outer-sphere electron transfer, by which an overall electrochemical reaction occurs. Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes.
Voltammetry
Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data for a voltammetric experiment comes in the form of a voltammogram which plots the current produced by the analyte versus the potential of the working electrode. Voltammetry is the study of current as a function of applied potential.
Working electrode
In electrochemistry, the working electrode is the electrode in an electrochemical system on which the reaction of interest is occurring. The working electrode is often used in conjunction with an auxiliary electrode, and a reference electrode in a three-electrode system. Depending on whether the reaction on the electrode is a reduction or an oxidation, the working electrode is called cathodic or anodic, respectively.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.