Concept

Freenet

Freenet is a peer-to-peer platform for censorship-resistant, anonymous communication. It uses a decentralized distributed data store to keep and deliver information, and has a suite of free software for publishing and communicating on the Web without fear of censorship. Both Freenet and some of its associated tools were originally designed by Ian Clarke, who defined Freenet's goal as providing freedom of speech on the Internet with strong anonymity protection. The distributed data store of Freenet is used by many third-party programs and plugins to provide microblogging and media sharing, anonymous and decentralised version tracking, blogging, a generic web of trust for decentralized spam resistance, Shoeshop for using Freenet over sneakernet, and many more. The origin of Freenet can be traced to Ian Clarke's student project at the University of Edinburgh, which he completed as a graduation requirement in the summer of 1999. Ian Clarke's resulting unpublished report "A distributed decentralized information storage and retrieval system" (1999) provided foundation for the seminal paper written in collaboration with other researchers, "Freenet: A Distributed Anonymous Information Storage and Retrieval System" (2001). According to CiteSeer, it became one of the most frequently cited computer science articles in 2002. Freenet can provide anonymity on the Internet by storing small encrypted snippets of content distributed on the computers of its users and connecting only through intermediate computers which pass on requests for content and sending them back without knowing the contents of the full file. This is similar to how routers on the Internet route packets without knowing anything about files —except Freenet has caching, a layer of strong encryption, and no reliance on centralized structures. This allows users to publish anonymously or retrieve various kinds of information. Freenet has been under continuous development since 2000. Freenet 0.7, released on 8 May 2008, is a major re-write incorporating a number of fundamental changes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
CS-438: Decentralized systems engineering
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
CS-234: Technologies for democratic society
This course will offer students a broad but hands-on introduction to technologies of human self-organization.
Show more
Related lectures (32)
Quantum Information and Computation
Covers quantum information, computation, advantages, challenges, error correction, and quantum algorithms.
Shor's Factoring Algorithm
Covers Shor's factoring algorithm, which efficiently factors large numbers using quantum computers.
Quantum Phase Estimation
Explains the Quantum Phase Estimation (QPE) algorithm and its complexity using two registers and SWAP gates.
Show more
Related publications (40)

Altruism, reciprocity, and tokens to reward forwarding data: Is that fair?

Verónica del Carmen Estrada Galiñanes, Arman Babaei

Decentralized storage networks offer services with intriguing possibilities to reduce inequalities in an extremely centralized market. Fair distribution of rewards, however, is still a persistent problem in the current generation of decentralized applicati ...
2024

Moby: A Blackout-Resistant Anonymity Network for Mobile Devices

Bryan Alexander Ford, Antoine Rault, Amogh Pradeep, Hira Javaid

Internet blackouts are challenging environments for anonymity and censorship resistance. Existing popular anonymity networks (e.g., Freenet, I2P, Tor) rely on Internet connectivity to function, making them impracticable during such blackouts. In such a set ...
2022

Smaller, Faster & Lighter KNN Graph Constructions

Rachid Guerraoui, Anne-Marie Kermarrec, Olivier Ruas

We propose GoldFinger, a new compact and fast-to-compute binary representation of datasets to approximate Jaccard’s index. We illustrate the effectiveness of GoldFinger on the emblematic big data problem of K-Nearest-Neighbor (KNN) graph construction and s ...
2020
Show more
Related concepts (25)
Peer-to-peer
Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers. Peers are equally privileged, equipotent participants in the network. This forms a peer-to-peer network of nodes. Peers make a portion of their resources, such as processing power, disk storage or network bandwidth, directly available to other network participants, without the need for central coordination by servers or stable hosts.
I2P
The Invisible Internet Project (I2P) is an anonymous network layer (implemented as a mix network) that allows for censorship-resistant, peer-to-peer communication. Anonymous connections are achieved by encrypting the user's traffic (by using end-to-end encryption), and sending it through a volunteer-run network of roughly 55,000 computers distributed around the world. Given the high number of possible paths the traffic can transit, a third party watching a full connection is unlikely.
Tor (network)
Tor, short for The Onion Router, is free and open-source software for enabling anonymous communication. It directs Internet traffic via a free, worldwide, volunteer overlay network that consists of more than seven thousand relays. Using Tor makes it more difficult to trace a user's Internet activity. Tor protects personal privacy by concealing a user's location and usage from anyone performing network surveillance or traffic analysis. It protects the user's freedom and ability to communicate confidentially through IP address anonymity using Tor exit nodes.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.