Maximum entropy spectral estimation is a method of spectral density estimation. The goal is to improve the spectral quality based on the principle of maximum entropy. The method is based on choosing the spectrum which corresponds to the most random or the most unpredictable time series whose autocorrelation function agrees with the known values. This assumption, which corresponds to the concept of maximum entropy as used in both statistical mechanics and information theory, is maximally non-committal with regard to the unknown values of the autocorrelation function of the time series. It is simply the application of maximum entropy modeling to any type of spectrum and is used in all fields where data is presented in spectral form. The usefulness of the technique varies based on the source of the spectral data since it is dependent on the amount of assumed knowledge about the spectrum that can be applied to the model.
In maximum entropy modeling, probability distributions are created on the basis of that which is known, leading to a type of statistical inference about the missing information which is called the maximum entropy estimate. For example, in spectral analysis the expected peak shape is often known, but in a noisy spectrum the center of the peak may not be clear. In such a case, inputting the known information allows the maximum entropy model to derive a better estimate of the center of the peak, thus improving spectral accuracy.
In the periodogram approach to calculating the power spectra, the sample autocorrelation function is multiplied by some window function and then Fourier transformed. The window is applied to provide statistical stability as well as to avoid leakage from other parts of the spectrum. However, the window limits the spectral resolution.
Maximum entropy method attempts to improve the spectral resolution by extrapolating the correlation function beyond the maximum lag in such a way that the entropy of the corresponding probability density function is maximized in each step of the extrapolation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal (including noise) as analyzed in terms of its frequency content, is called its spectrum.
The goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we emp ...
Washington2024
, ,
With the application requirements of wireless technology in implantable bioelectronics, knowledge of the fundamental limits for implanted antennas becomes critical. In this work, we investigated the variation of maximum power density within simplified body ...
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...