Concept

Integro-differential equation

In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function. The general first-order, linear (only with respect to the term involving derivative) integro-differential equation is of the form As is typical with differential equations, obtaining a closed-form solution can often be difficult. In the relatively few cases where a solution can be found, it is often by some kind of integral transform, where the problem is first transformed into an algebraic setting. In such situations, the solution of the problem may be derived by applying the inverse transform to the solution of this algebraic equation. Consider the following second-order problem, where is the Heaviside step function. The Laplace transform is defined by, Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation, Thus, Inverting the Laplace transform using contour integral methods then gives Alternatively, one can complete the square and use a table of Laplace transforms ("exponentially decaying sine wave") or recall from memory to proceed: Integro-differential equations model many situations from science and engineering, such as in circuit analysis. By Kirchhoff's second law, the net voltage drop across a closed loop equals the voltage impressed . (It is essentially an application of energy conservation.) An RLC circuit therefore obeys where is the current as a function of time, is the resistance, the inductance, and the capacitance. The activity of interacting inhibitory and excitatory neurons can be described by a system of integro-differential equations, see for example the Wilson-Cowan model. The Whitham equation is used to model nonlinear dispersive waves in fluid dynamics. Integro-differential equations have found applications in epidemiology, the mathematical modeling of epidemics, particularly when the models contain age-structure or describe spatial epidemics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
FIN-472: Computational finance
Participants of this course will master computational techniques frequently used in mathematical finance applications. Emphasis will be put on the implementation and practical aspects.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.