Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera Plasmodium and Hemoproteus (phylum Apicomplexa, class Haemosporidia, family Plasmoiidae). The disease is transmitted by a dipteran vector including mosquitoes in the case of Plasmodium parasites and biting midges for Hemoproteus. The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.
Avian malaria is most notably caused by Plasmodium relictum, a protist that infects birds in all parts of the world apart from Antarctica. There are several other species of Plasmodium that infect birds, such as Plasmodium anasum and Plasmodium gallinaceum, but these are of less importance except, in occasional cases, for the poultry industry. The disease is found worldwide, with important exceptions. Usually, it does not kill birds. However, in areas where avian malaria is newly introduced, such as the islands of Hawaiʻi, it can be devastating to birds that have lost evolutionary resistance over time.
Avian malaria is a vector-transmitted disease caused by protozoa in the genera Plasmodium and Haemoproteus; these parasites reproduce asexually within bird hosts and both asexually and sexually within their insect vectors, which include mosquitoes (Culicidae), biting midges (Ceratopogonidae), and louse flies (Hippoboscidae). The blood-parasites of the genus Plasmodium and Haemoproteus, encompass an extremely diverse group of pathogens with global distribution. The large number of parasite lineages along with their wide range of potential host species and the pathogen's capacity for host switching makes the study of this system extremely complex.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In epidemiology, a disease vector is any living agent that carries and transmits an infectious pathogen to another living organism; agents regarded as vectors are organisms, such as parasites or microbes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected a mosquito. Arthropods form a major group of pathogen vectors with mosquitoes, flies, sand flies, lice, fleas, ticks, and mites transmitting a huge number of pathogens.
Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue (often the liver) before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria.
The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded.
Computational studies of metabolism aim to systematically analyze the metabolic behaviour of biological systems in different conditions. Genome-scale metabolic network models (GEMs) capture the connection between elements of the network by applying stoichi ...
Background Low-density (LD)Plasmodiuminfections are missed by standard malaria rapid diagnostic tests (standard mRDT) when the blood antigen concentration is below the detection threshold. The clinical impact of these LD infections is unknown. This study i ...
Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise ...