Hydrogen bromide is the inorganic compound with the formula . It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.
Hydrogen bromide, and its aqueous solution, Hydrobromic acid, are commonly used reagents in the preparation of bromide compounds.
Hydrogen bromide and hydrobromic acid are important reagents in the production of organobromine compounds. In a free-radical reaction, HBr adds to alkenes:
The resulting alkyl bromides are useful alkylating agents, e.g., as precursors to fatty amine derivatives. Related free radical additions to allyl chloride and styrene give 1-bromo-3-chloropropane and phenylethylbromide, respectively.
Hydrogen bromide reacts with dichloromethane to give bromochloromethane and dibromomethane, sequentially:
These metathesis reactions illustrate the consumption of the stronger acid (HBr) and release of the weaker acid (HCl).
Allyl bromide is prepared by treating allyl alcohol with HBr:
HBr adds to alkynes to yield bromoalkenes. The stereochemistry of this type of addition is usually anti:
RC≡CH + HBr → RC(Br)=CH2
Also, HBr adds epoxides and lactones, resulting in ring-opening.
With triphenylphosphine, HBr gives triphenylphosphonium bromide, a solid "source" of HBr.
Vanadium(III) bromide and molybdenum(IV) bromide were prepared by treatment of the higher chlorides with HBr. These reactions proceed via redox reactions:
Hydrogen bromide (along with hydrobromic acid) is produced by combining hydrogen and bromine at temperatures between 200 and 400 °C. The reaction is typically catalyzed by platinum or asbestos.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemistry, hydrogen halides (hydrohalic acids when in the aqueous phase) are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, or astatine. All known hydrogen halides are gases at Standard Temperature and Pressure. The hydrogen halides are diatomic molecules with no tendency to ionize in the gas phase (although liquified hydrogen fluoride is a polar solvent somewhat similar to water).
A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption, see potassium bromide. The bromide ion has an ionic radius of 196 pm.
Hydrogen iodide () is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent. HI is a colorless gas that reacts with oxygen to give water and iodine.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
Combining iron with a tetraamido-macrocyclic ligand (Fe-TAML) as a catalyst and with hydrogen peroxide (H2O2) as the bulk oxidant is a process that has been suggested for the oxidative abatement of micropollutants during water treatment. In this study, the ...
During chlorination of bromide-containing waters, a significant formation of brominated disinfection byproducts is expected. This is of concern because Br-DBPs are generally more toxic than their chlorinated analogues. In this study, synthetic water sample ...
Vast amounts of phosphogypsum (PG) which is a by-product of phosphorous acid production from apatite rock using sulphuric acid, are deposited in large piles at many locations worldwide. PG materials are added at rates of the order of megatonnes (Mt) per an ...
Paul Scherrer Institute, World Resources Forum2019