Hydrogen iodide () is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent. HI is a colorless gas that reacts with oxygen to give water and iodine. With moist air, HI gives a mist (or fumes) of hydroiodic acid. It is exceptionally soluble in water, giving hydroiodic acid. One liter of water will dissolve 425 liters of HI gas, the most concentrated solution having only four water molecules per molecule of HI. Hydroiodic acid is not pure hydrogen iodide, but a mixture containing it. Commercial "concentrated" hydroiodic acid usually contains 48–57% HI by mass. The solution forms an azeotrope boiling at 127 °C with 57% HI, 43% water. The high acidity is caused by the dispersal of the ionic charge over the anion. The iodide ion radius is much larger than the other common halides, which results in the negative charge being dispersed over a large space. By contrast, a chloride ion is much smaller, meaning its negative charge is more concentrated, leading to a stronger interaction between the proton and the chloride ion. This weaker H+···I− interaction in HI facilitates dissociation of the proton from the anion and is the reason HI is the strongest acid of the hydrohalides. Ka ≈ 1010 Ka ≈ 109 Ka ≈ 106 The industrial preparation of HI involves the reaction of I2 with hydrazine, which also yields nitrogen gas: When performed in water, the HI must be distilled. HI can also be distilled from a solution of NaI or other alkali iodide in concentrated phosphoric acid (note that concentrated sulfuric acid will not work for acidifying iodides, as it will oxidize the iodide to elemental iodine).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Intermolecular Interactions: Forces and Bonds
Covers intermolecular forces, hydrogen bonding, biological molecules, DNA structure, and relative strengths of interactions.
Acids and Bases: Fundamentals and Equilibria
Covers the fundamentals of acids and bases, including acid-base reactions, equilibrium constants, and amphoteric substances.
Related publications (32)

Gradient Heating Epitaxial Growth Gives Well Lattice-Matched Mo2C-Mo2N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting

Bowen Yang, Mei Wang, Peng Guo

An optimized approach to producing lattice-matched heterointerfaces for electrocatalytic hydrogen evolution has not yet been reported. Herein, we present the synthesis of lattice-matched Mo2C-Mo2N heterostructures using a gradient heating epitaxial growth ...
WILEY-V C H VERLAG GMBH2022

Catalyzing Bond-Dissociation in Graphene via Alkali-Iodide Molecules

Klaus Kern, Stephan Rauschenbach, Sabine Abb, Sven Alexander Szilagyi, Hannah Julia Ochner

Atomic design of a 2D-material such as graphene can be substantially influenced by etching, deliberately induced in a transmission electron microscope. It is achieved primarily by overcoming the threshold energy for defect formation by controlling the kine ...
WILEY-V C H VERLAG GMBH2021

Iodic acid, sulfuric acid and methanesulfonic acid collected during the Arctic Ocean 2018 expedition

Julia Schmale, Andrea Baccarini

Measurements of iodic acid, sulfuric acid and methanesulfonic acid concentration in the gas phase obtained with a nitrate chemical ionization mass spectrometer (we used an APi-TOF mass spectrometer produced by Tofwerk AG coupled with a Chemical ionization ...
2020
Show more
Related concepts (10)
Hydrogen fluoride
Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids.
Hydrogen halide
In chemistry, hydrogen halides (hydrohalic acids when in the aqueous phase) are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, or astatine. All known hydrogen halides are gases at Standard Temperature and Pressure. The hydrogen halides are diatomic molecules with no tendency to ionize in the gas phase (although liquified hydrogen fluoride is a polar solvent somewhat similar to water).
Hydrogen bromide
Hydrogen bromide is the inorganic compound with the formula . It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.