In computer science, in particular in the field of formal language theory,
an abstract family of languages is an abstract mathematical notion generalizing characteristics common to the regular languages, the context-free languages and the recursively enumerable languages, and other families of formal languages studied in the scientific literature.
A formal language is a set L for which there exists a finite set of abstract symbols Σ such that , where * is the Kleene star operation.
A family of languages is an ordered pair , where
Σ is an infinite set of symbols;
Λ is a set of formal languages;
For each L in Λ there exists a finite subset such that ; and
L ≠ Ø for some L in Λ.
A trio is a family of languages closed under homomorphisms that do not introduce the empty word, inverse homomorphisms, and intersections with a regular language.
A full trio, also called a cone, is a trio closed under arbitrary homomorphism.
A (full) semi-AFL is a (full) trio closed under union.
A (full) AFL is a (full) semi-AFL closed under concatenation and the Kleene plus.
The following are some simple results from the study of abstract families of languages.
Within the Chomsky hierarchy, the regular languages, the context-free languages, and the recursively enumerable languages are all full AFLs. However, the context sensitive languages and the recursive languages are AFLs, but not full AFLs because they are not closed under arbitrary homomorphisms.
The family of regular languages are contained within any cone (full trio). Other categories of abstract families are identifiable by closure under other operations such as shuffle, reversal, or substitution.
Seymour Ginsburg of the University of Southern California and Sheila Greibach of Harvard University presented the first AFL theory paper at the IEEE Eighth Annual Symposium on Switching and Automata Theory in 1967.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a Turing machine that, when given a finite sequence of symbols as input, always halts and accepts it if it belongs to the language and halts and rejects it otherwise.
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language. Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages.
In formal language theory, a context-sensitive language is a language that can be defined by a context-sensitive grammar (and equivalently by a noncontracting grammar). Context-sensitive is one of the four types of grammars in the Chomsky hierarchy. Computationally, a context-sensitive language is equivalent to a linear bounded nondeterministic Turing machine, also called a linear bounded automaton. That is a non-deterministic Turing machine with a tape of only cells, where is the size of the input and is a constant associated with the machine.
The massive parallelism and resource sharing embodying today’s cloud business model not only exacerbate the security challenge of timing channels, but also undermine the viability of defenses based on resource partitioning. We propose hypervisor-enforced t ...