In mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a Turing machine that, when given a finite sequence of symbols as input, always halts and accepts it if it belongs to the language and halts and rejects it otherwise. In Theoretical computer science, such always-halting Turing machines are called total Turing machines or algorithms (Sipser 1997). Recursive languages are also called decidable. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a non-deterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turing-decidable language, rather than simply decidable. The class of all recursive languages is often called R, although this name is also used for the class RP. This type of language was not defined in the Chomsky hierarchy of . All recursive languages are also recursively enumerable. All regular, context-free and context-sensitive languages are recursive. There are two equivalent major definitions for the concept of a recursive language: A recursive formal language is a recursive subset in the set of all possible words over the alphabet of the language. A recursive language is a formal language for which there exists a Turing machine that, when presented with any finite input string, halts and accepts if the string is in the language, and halts and rejects otherwise. The Turing machine always halts: it is known as a decider and is said to decide the recursive language. By the second definition, any decision problem can be shown to be decidable by exhibiting an algorithm for it that terminates on all inputs. An undecidable problem is a problem that is not decidable. As noted above, every context-sensitive language is recursive.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
FIN-609: Asset Pricing (2011 - 2024)
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting emphasis on theoretical models that help our unde
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.