Summary
In optics, the exit pupil is a virtual aperture in an optical system. Only rays which pass through this virtual aperture can exit the system. The exit pupil is the of the aperture stop in the optics that follow it. In a telescope or compound microscope, this image is the image of the objective element(s) as produced by the eyepiece. The size and shape of this disc is crucial to the instrument's performance, because the observer's eye can see light only if it passes through the aperture. The term exit pupil is also sometimes used to refer to the diameter of the virtual aperture. Older literature on optics sometimes refers to the exit pupil as the Ramsden disc, named after English instrument-maker Jesse Ramsden. To use an optical instrument, the entrance pupil of the viewer's eye must be aligned with and be of similar size to the instrument's exit pupil. This properly couples the optical system to the eye and avoids vignetting. (The entrance pupil of the eye is the image of the anatomical pupil as seen through the cornea.) The location of the exit pupil thus determines the eye relief of an eyepiece. Good eyepiece designs produce an exit pupil of diameter approximating the eye's apparent pupil diameter and located about 20 mm away from the last surface of the eyepiece for the viewer's comfort. If the disc is larger than the eye's pupil, light will be lost instead of entering the eye. If the disc is too close to the last surface of the eyepiece, the eye will have to be uncomfortably close for viewing; if too far away, the observer will have difficulty maintaining the eye's alignment with the disc because there is no instrumental help to physically hold the eye position. Since the eye's pupil varies in diameter with viewing conditions, the ideal exit pupil diameter depends on the application. An astronomical telescope requires a large exit pupil because it is designed to be used for looking at dim objects at night, while a microscope will require a much smaller exit pupil since an object being observed will be brightly illuminated.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.