Summary
In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function at any based on the value and slope of the function at , given that is differentiable on (or ) and that is close to . In short, linearization approximates the output of a function near . For example, . However, what would be a good approximation of ? For any given function , can be approximated if it is near a known differentiable point. The most basic requisite is that , where is the linearization of at . The point-slope form of an equation forms an equation of a line, given a point and slope . The general form of this equation is: . Using the point , becomes . Because differentiable functions are locally linear, the best slope to substitute in would be the slope of the line tangent to at . While the concept of local linearity applies the most to points arbitrarily close to , those relatively close work relatively well for linear approximations. The slope should be, most accurately, the slope of the tangent line at . Visually, the accompanying diagram shows the tangent line of at . At , where is any small positive or negative value, is very nearly the value of the tangent line at the point . The final equation for the linearization of a function at is: For , . The derivative of is , and the slope of at is . To find , we can use the fact that . The linearization of at is , because the function defines the slope of the function at . Substituting in , the linearization at 4 is .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (19)
ME-371: Discretization methods in fluids
Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides. Les concepts fondamentaux sont présentés dans le cadre de la méthode d
ME-221: Dynamical systems
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
ME-466: Instability
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
Show more
Related publications (106)
Related concepts (8)
Eigenvalues and eigenvectors
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
Stability theory
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. In partial differential equations one may measure the distances between functions using Lp norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov–Hausdorff distance.
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more