In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function at any based on the value and slope of the function at , given that is differentiable on (or ) and that is close to . In short, linearization approximates the output of a function near . For example, . However, what would be a good approximation of ? For any given function , can be approximated if it is near a known differentiable point. The most basic requisite is that , where is the linearization of at . The point-slope form of an equation forms an equation of a line, given a point and slope . The general form of this equation is: . Using the point , becomes . Because differentiable functions are locally linear, the best slope to substitute in would be the slope of the line tangent to at . While the concept of local linearity applies the most to points arbitrarily close to , those relatively close work relatively well for linear approximations. The slope should be, most accurately, the slope of the tangent line at . Visually, the accompanying diagram shows the tangent line of at . At , where is any small positive or negative value, is very nearly the value of the tangent line at the point . The final equation for the linearization of a function at is: For , . The derivative of is , and the slope of at is . To find , we can use the fact that . The linearization of at is , because the function defines the slope of the function at . Substituting in , the linearization at 4 is .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.