Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called 'X-ray'. Plain radiography or roentgenography generally refers to projectional radiography (without the use of more advanced techniques such as computed tomography that can generate 3D-images). Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.
X-ray generator
Projectional radiographs generally use X-rays created by X-ray generators, which generate X-rays from X-ray tubes.
An anti-scatter grid may be placed between the patient and the detector to reduce the quantity of scattered x-rays that reach the detector. This improves the contrast resolution of the image, but also increases radiation exposure for the patient.
X-ray detector
Detectors can be divided into two major categories: imaging detectors (such as photographic plates and X-ray film (photographic film), now mostly replaced by various digitizing devices like s or flat panel detectors) and dose measurement devices (such as ionization chambers, Geiger counters, and dosimeters used to measure the local radiation exposure, dose, and/or dose rate, for example, for verifying that radiation protection equipment and procedures are effective on an ongoing basis).
Lead is the main material used by radiography personnel for shielding against scattered X-rays.
Projectional radiography relies on the characteristics of X-ray radiation (quantity and quality of the beam) and knowledge of how it interacts with human tissue to create diagnostic images. X-rays are a form of ionizing radiation, meaning it has sufficient energy to potentially remove electrons from an atom, thus giving it a charge and making it an ion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores large-area sensors for X-ray detection, covering direct and indirect methods, detector performance metrics, and active matrix flat panel imagers.
In vertebrate anatomy, hip (or coxa in medical terminology; : coxae) refers to either an anatomical region or a joint. The hip region is located lateral and anterior to the gluteal region, inferior to the iliac crest, and overlying the greater trochanter of the femur, or "thigh bone". In adults, three of the bones of the pelvis have fused into the hip bone or acetabulum which forms part of the hip region. The hip joint, scientifically referred to as the acetabulofemoral joint (art.
A bone scan or bone scintigraphy sɪnˈtɪɡrəfi is a nuclear medicine imaging technique of the bone. It can help diagnose a number of bone conditions, including cancer of the bone or metastasis, location of bone inflammation and fractures (that may not be visible in traditional s), and bone infection (osteomyelitis). Nuclear medicine provides functional imaging and allows visualisation of bone metabolism or bone remodeling, which most other imaging techniques (such as X-ray computed tomography, CT) cannot.
X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays. Detectors can be divided into two major categories: imaging detectors (such as photographic plates and X-ray film (photographic film), now mostly replaced by various digitizing devices like s or flat panel detectors) and dose measurement devices (such as ionization chambers, Geiger counters, and dosimeters used to measure the local radiation exposure, dose, and/or dose rate, for example, for verifying that radiation protection equipment and procedures are effective on an ongoing basis).
Basic knowledge ofthe classical non-destructive testing methods as they are used today in industrial applications and the advanced
(mosily imaginé) technologies used for the analysis of materials and
This course covers the physical principles underlying medical diagnostic imaging (radiography, fluoroscopy, CT, SPECT, PET, MRI), radiation therapy and radiopharmacy. The focus is not only on risk an
Principles of Magnetic Resonance Imaging (MRI) and applications to medical imaging. Principles of modern multi-dimensional NMR in liquids and solids. Structure determination of proteins & materials. M
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Cancer is among the leading causes of death worldwide, and as knowledge of the disease continues to grow there is an increasing interest towards precision medicine: more specifically towards the theranostics field, i.e the development of targeted molecular ...
Microcomputed tomography (mu CT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, ...