Background extinction rate, also known as the normal extinction rate, refers to the standard rate of extinction in Earth's geological and biological history before humans became a primary contributor to extinctions. This is primarily the pre-human extinction rates during periods in between major extinction events.
Extinctions are a normal part of the evolutionary process, and the background extinction rate is a measurement of "how often" they naturally occur. Normal extinction rates are often used as a comparison to present day extinction rates, to illustrate the higher frequency of extinction today than in all periods of non-extinction events before it.
Background extinction rates have not remained constant, although changes are measured over geological time, covering millions of years.
Background extinction rates are typically measured in three different ways. The first is simply the number of species that normally go extinct over a given period of time. For example, at the background rate one species of bird will go extinct every estimated 400 years. Another way the extinction rate can be given is in million species years (MSY). For example, there is approximately one extinction estimated per million species years. From a purely mathematical standpoint this means that if there are a million species on the planet earth, one would go extinct every year, while if there was only one species it would go extinct in one million years, etc. The third way is in giving species survival rates over time. For example, given normal extinction rates species typically exist for 5–10 million years before going extinct.
Some species lifespan estimates by taxonomy are given below (Lawton & May 1995).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent (e.g. through land loss).
The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded.
Extinction is the termination of a taxon by the death of its last member. A taxon may become functionally extinct before the death of its last member if it loses the capacity to reproduce and recover. Because a species' potential range may be very large, determining this moment is difficult, and is usually done retrospectively. This difficulty leads to phenomena such as Lazarus taxa, where a species presumed extinct abruptly "reappears" (typically in the fossil record) after a period of apparent absence.
We investigate the evolutionary rescue of a microbial population in a gradually deteriorating environment, through a combination of analytical calculations and stochastic simulations. We consider a population destined for extinction in the absence of mutan ...
To assess the number of life-bearing worlds in astrophysical environments, it is necessary to take the intertwined processes of abiogenesis (birth), extinction (death), and transfer of life (migration) into account. We construct a mathematical model that i ...
Ultra high energy neutrinos are important astrophysical messengers that carry information on processes taking place in extreme astrophysical environments. The detection of neutrinos originating from the Greisen-Zatsepin-Kuzmin (GZK) process would confirm t ...