Concept

Atomic form factor

Summary
In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron. The common feature of all form factors is that they involve a Fourier transform of a spatial density distribution of the scattering object from real space to momentum space (also known as reciprocal space). For an object with spatial density distribution, \rho(\mathbf{r}), the form factor, f(\mathbf{Q}), is defined as :f(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i\mathbf{Q} \cdot \mathbf{r}}\mathrm{d}^3\mathbf{r}, where \rho(\mathbf{r}) is the spatial density of the scatterer about its center of mass (\mathbf{r}=0), and \mathbf{Q} is the momentum transfer. As a result of the nature of the Fourier transform, the broader
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading