Summary
Uranium-236 (236U) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel. The fissile isotope uranium-235 fuels most nuclear reactors. When 235U absorbs a thermal neutron, one of two processes can occur. About 82% of the time, it will fission; about 18% of the time, it will not fission, instead emitting gamma radiation and yielding 236U. Thus, the yield of 236U per 235U+n reaction is about 18%, and the yield of fission products is about 82%. In comparison, the yields of the most abundant individual fission products like caesium-137, strontium-90, and technetium-99 are between 6% and 7%, and the combined yield of medium-lived (10 years and up) and long-lived fission products is about 32%, or a few percent less as some are transmutated by neutron capture. Caesium-135 is the most notable "absent fission product", as it is found far more in nuclear fallout than in spent nuclear fuel since its parent nuclide Xenon-135 is the strongest known neutron poison. The second-most used fissile isotope plutonium-239 can also fission or not fission on absorbing a thermal neutron. The product plutonium-240 makes up a large proportion of reactor-grade plutonium (plutonium recycled from spent fuel that was originally made with enriched natural uranium and then used once in an LWR). 240Pu decays with a half-life of 6561 years into 236U. In a closed nuclear fuel cycle, most 240Pu will be fissioned (possibly after more than one neutron capture) before it decays, but 240Pu discarded as nuclear waste will decay over thousands of years. As 240Pu has a shorter half life than 239Pu the grade of any sample of plutonium mostly composed of those two isotopes will slowly increase while the total amount of plutonium in the sample will slowly decrease over centuries and millennia. Alpha decay of 240Pu will yield uranium-236 while 239Pu decays to uranium-235.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Related lectures (32)
Nuclear Challenges and Conclusion
Discusses nuclear challenges, waste management, uranium enrichment, reactor generations, and the future of nuclear energy.
The Manhattan Project: From Atom to Atomic Bomb
Delves into the journey from atomic energy discovery to the atomic bomb development during the Manhattan Project.
Introduction to Nuclear Engineering
Introduces nuclear engineering, covering reactions, chain reactions, fuel cycle, criticality, and multiplication factors.
Show more
Related publications (32)

The isotopic signature of U(V) during bacterial reduction

Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown

The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...
2024
Show more
Related concepts (20)
Nuclear transmutation
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.
Actinides in the environment
Environmental radioactivity is not limited to actinides; non-actinides such as radon and radium are of note. While all actinides are radioactive, there are a lot of actinides or actinide-relating minerals in the Earth's crust such as uranium and thorium. These minerals are helpful in many ways, such as carbon-dating, most detectors, X-rays, and more. Generally, ingested insoluble actinide compounds, such as high-fired uranium dioxide and mixed oxide (MOX) fuel, will pass through the digestive system with little effect since they cannot dissolve and be absorbed by the body.
Reprocessed uranium
Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing. Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight.
Show more