Falsifiability is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl Popper in his book The Logic of Scientific Discovery (1934). A theory or hypothesis is falsifiable (or refutable) if it can be logically contradicted by an empirical test. Popper proposed falsifiability as the cornerstone solution to both the problem of induction and the problem of demarcation. He insisted that, as a logical criterion, falsifiability is distinct from the related concept "capacity to be proven wrong" discussed in Lakatos' falsificationism. Even being a logical criterion, its purpose is to make the theory predictive and testable, and thus useful in practice. Popper contrasted falsifiability to the intuitively similar concept of verifiability that was then current in logical positivism. His argument goes that the only way to verify a claim such as "All swans are white" would be if one could theoretically observe all swans, which is not possible. Instead, falsifiability searches for the anomalous instance, such that observing a single black swan is theoretically reasonable and sufficient to logically falsify the claim. On the other hand, the Duhem–Quine thesis says that definitive experimental falsifications are impossible and that no scientific hypothesis is by itself capable of making predictions, because an empirical test of the hypothesis requires one or more background assumptions. According to Popper there is a clean asymmetry on the logical side and falsifiability does not have the Duhem problem because it is a logical criterion. Experimental research has the Duhem problem and other problems, such as induction, but, according to Popper, statistical tests, which are only possible when a theory is falsifiable, can still be useful within a critical discussion. Philosophers such as Deborah Mayo consider that Popper "comes up short" in his description of the scientific role of statistical and data models.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
DH-603: Methodological Advances in Digital Humanities
Through a combination of lectures, seminar, and practical workshops, this course serves as an introduction to critical digital humanities and algorithmic critique, and is specifically tailored for res
HUM-402: Experimental history of science I
The course allows students to learn by doing about the history of science, and the role played by experimentation, technical skills or material objects in the production of knowledge. Students will ex
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Related lectures (8)
Scientific Method: Critical Thinking in Science
Covers experimental methods, critical thinking, scientific fraud, and the importance of doubt in science, using various examples to illustrate key concepts.
Kinematics of Material Point
Covers the kinematics of a material point, including orders of magnitude and practical applications.
Show more
Related publications (32)

Reducing uncertainties in response predictions of earthquake-damaged masonry buildings using data from image-based inspection

Ian Smith, Katrin Beyer, Bryan German Pantoja Rosero, Mathias Christian Haindl Carvallo

Image information about the state of a building after an earthquake, which can be collected without endangering the post-earthquake reconnaissance activities, can be used to reduce uncertainties in response predictions for future seismic events. This paper ...
Springer2024

The effects of war on Ukrainian research

Gaétan Jean A de Rassenfosse, Wolf-Hendrik Peter Uhlbach, Tetiana Murovana

The ongoing war in Ukraine has profoundly impacted the Ukrainian scientific community. Numerous researchers have either emigrated or transitioned to alternate professions. For those who remain in research, the destruction of civil infrastructure and psycho ...
London2023

Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier

Alessandro Chiesa

We prove that Kilian's four-message succinct argument system is post-quantum secure in the standard model when instantiated with any probabilistically checkable proof and any collapsing hash function (which in turn exist based on the post-quantum hardness ...
IEEE COMPUTER SOC2022
Show more
Related concepts (27)
Karl Popper
Sir Karl Raimund Popper (28 July 1902 – 17 September 1994) was an Austrian-British philosopher, academic and social commentator. One of the 20th century's most influential philosophers of science, Popper is known for his rejection of the classical inductivist views on the scientific method in favour of empirical falsification. According to Popper, a theory in the empirical sciences can never be proven, but it can be falsified, meaning that it can (and should) be scrutinised with decisive experiments.
Scientific method
The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific method for additional detail.) It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.
Philosophy of science
Philosophy of science is a branch of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultimate purpose of science. This discipline overlaps with metaphysics, ontology, and epistemology, for example, when it explores the relationship between science and truth. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of science.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.