In phylogenetics, basal is the direction of the base (or root) of a rooted phylogenetic tree or cladogram. The term may be more strictly applied only to nodes adjacent to the root, or more loosely applied to nodes regarded as being close to the root. Note that extant taxa that lie on branches connecting directly to the root are not more closely related to the root than any other extant taxa.
While there must always be two or more equally "basal" clades sprouting from the root of every cladogram, those clades may differ widely in taxonomic rank, species diversity, or both. If C is a basal clade within D that has the lowest rank of all basal clades within D, C may be described as the basal taxon of that rank within D. The concept of a 'key innovation' implies some degree of correlation between evolutionary innovation and diversification. However, such a correlation does not make a given case predicable, so ancestral characters should not be imputed to the members of a less species-rich basal clade without additional evidence.
In general, clade A is more basal than clade B if B is a subgroup of the sister group of A or of A itself. Within large groups, "basal" may be used loosely to mean 'closer to the root than the great majority of', and in this context terminology such as "very basal" may arise. A 'core clade' is a clade representing all but the basal clade(s) of lowest rank within a larger clade; e.g., core eudicots. Of course, no extant taxon is closer to the root than any other, by definition.
A basal group in the stricter sense forms a sister group to the rest of the larger clade, as in the following case:
While it is easy to identify a basal clade in such a cladogram, the appropriateness of such an identification is dependent on the accuracy and completeness of the diagram. It is often assumed in this example that the terminal branches of the cladogram depict all the extant taxa of a given rank within the clade; this is one reason the term basal is highly deceptive, as the lack of additional species in one clade is taken as evidence of morphological affinity with ancestral taxa.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In biology, taxonomic rank is the relative level of a group of organisms (a taxon) in an ancestral or hereditary hierarchy. A common system of biological classification (taxonomy) consists of species, genus, family, order, class, phylum, kingdom, and domain. While older approaches to taxonomic classification were phenomenological, forming groups on the basis of similarities in appearance, organic structure and behaviour, methods based on genetic analysis have opened the road to cladistics.
In phylogenetics, a plesiomorphy ("near form") and symplesiomorphy are synonyms for an ancestral character shared by all members of a clade, which does not distinguish the clade from other clades. Plesiomorphy, symplesiomorphy, apomorphy, and synapomorphy, all mean a trait shared between species because they share an ancestral species. Apomorphic and synapomorphic characteristics convey much information about evolutionary clades and can be used to define taxa. However, plesiomorphic and symplesiomorphic characteristics cannot.
Gondwana (pronɡɒndˈwɑːnə) was a large landmass, sometimes referred to as a supercontinent. It was formed by the accretion of several cratons (a large stable block of the earth's crust), beginning with the East African Orogeny, the collision of India and Madagascar with East Africa, and was completed with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively.
Soil microbial communities are vital for multiple ecosystem processes and services. In particular, soil microbial food webs are key determinants of soil biodiversity, functioning and stability. Unclear, however, is how struc-tural features of food webs, su ...
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly genera ...
Elsevier Sci Ltd2017
, , ,
Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because ...