Concept

Gliding flight

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute. Although the human application of gliding flight usually refers to aircraft designed for this purpose, most powered aircraft are capable of gliding without engine power. As with sustained flight, gliding generally requires the application of an airfoil, such as the wings on aircraft or birds, or the gliding membrane of a gliding possum. However, gliding can be achieved with a flat (uncambered) wing, as with a simple paper plane, or even with card-throwing. However, some aircraft with lifting bodies and animals such as the flying snake can achieve gliding flight without any wings by creating a flattened surface underneath. Glider aircraft Most winged aircraft can glide to some extent, but there are several types of aircraft designed to glide: Glider, also known as a sailplane Hang glider Paraglider Speed glider Ram-air parachute Rotor kite, if untethered, known as a rotary glider, or gyroglider. Military glider Paper aeroplane Radio-controlled glider Rocket glider Wingsuit The main human application is currently recreational, though during the Second World War military gliders were used for carrying troops and equipment into battle. The types of aircraft that are used for sport and recreation are classified as gliders (sailplanes), hang gliders and paragliders. These two latter types are often foot-launched. The design of all three types enables them to repeatedly climb using rising air and then to glide before finding the next source of lift. When done in gliders (sailplanes), the sport is known as gliding and sometimes as soaring. For foot-launched aircraft, it is known as hang gliding and paragliding.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (5)
Gliding Paper Experiment
Delves into the dynamics of lubricated flow through a project with a gliding piece of paper.
The paper planes challenge
Explores the physics and math behind paper planes, demonstrating how factors like wing loading and surface area affect flight speed.
Sailboat Keel Design
Explores sailboat keel design and its impact on performance, emphasizing the importance of reducing induced drag.
Show more
Related publications (36)

Accurate and agile flight with winged drones

Valentin Wüest

Drones hold promise to assist in civilian tasks. To realize this application, future drones must operate within large cities, covering large distances while navigating within cluttered urban landscapes. The increased efficiency of winged drones over rotary ...
EPFL2024

Data from: Optimal blade pitch control for enhanced vertical-axis wind turbine performance

Karen Ann J Mulleners, Sébastien Le Fouest

This directory contains open-source data obtained using a single-bladed H-type vertical-axis wind turbine prototype with individual blade pitching. This data results from the optimisation of the blade's pitching kinematics using a genetic algorithm at two ...
Zenodo2024

Wing and tail morphing in birds and drones

Enrico Ajanic

To aid humans in civilian tasks, future drones will have to operate in large cities that abound with difficult flight conditions such as confined spaces, obstacles, and turbulent air. Such drones must cruise efficiently to cover vast distances fast and als ...
EPFL2023
Show more
Related concepts (17)
Glider (aircraft)
A glider is a fixed-wing aircraft that is supported in flight by the dynamic reaction of the air against its lifting surfaces, and whose free flight does not depend on an engine. Most gliders do not have an engine, although motor-gliders have small engines for extending their flight when necessary by sustaining the altitude (normally a sailplane relies on rising air to maintain altitude) with some being powerful enough to take off by self-launch.
Wing
A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.
Flying and gliding animals
A number of animals are capable of aerial locomotion, either by powered flight or by gliding. This trait has appeared by evolution many times, without any single common ancestor. Flight has evolved at least four times in separate animals: insects, pterosaurs, birds, and bats. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.