Summary
During nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1. There is a different parameter, T2, the spin-spin relaxation time, which concerns the exponential relaxation of the transverse component of the nuclear magnetization vector ( to the external magnetic field). Measuring the variation of T1 and T2 in different materials is the basis for some magnetic resonance imaging techniques. T1 characterizes the rate at which the longitudinal Mz component of the magnetization vector recovers exponentially towards its thermodynamic equilibrium, according to equation Or, for the specific case that It is thus the time it takes for the longitudinal magnetization to recover approximately 63% [1-(1/e)] of its initial value after being flipped into the magnetic transverse plane by a 90° radiofrequency pulse. Nuclei are contained within a molecular structure, and are in constant vibrational and rotational motion, creating a complex magnetic field. The magnetic field caused by thermal motion of nuclei within the lattice is called the lattice field. The lattice field of a nucleus in a lower energy state can interact with nuclei in a higher energy state, causing the energy of the higher energy state to distribute itself between the two nuclei. Therefore, the energy gained by nuclei from the RF pulse is dissipated as increased vibration and rotation within the lattice, which can slightly increase the temperature of the sample. The name spin-lattice relaxation refers to the process in which the spins give the energy they obtained from the RF pulse back to the surrounding lattice, thereby restoring their equilibrium state.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.