In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping.
For a fixed positive real number a, the mapping
is the squeeze mapping with parameter a. Since
is a hyperbola, if u = ax and v = y/a, then uv = xy and the points of the image of the squeeze mapping are on the same hyperbola as (x,y) is. For this reason it is natural to think of the squeeze mapping as a hyperbolic rotation, as did Émile Borel in 1914, by analogy with circular rotations, which preserve circles.
The squeeze mapping sets the stage for development of the concept of logarithms. The problem of finding the area bounded by a hyperbola (such as xy = 1) is one of quadrature. The solution, found by Grégoire de Saint-Vincent and Alphonse Antonio de Sarasa in 1647, required the natural logarithm function, a new concept. Some insight into logarithms comes through hyperbolic sectors that are permuted by squeeze mappings while preserving their area. The area of a hyperbolic sector is taken as a measure of a hyperbolic angle associated with the sector. The hyperbolic angle concept is quite independent of the ordinary circular angle, but shares a property of invariance with it: whereas circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping. Both circular and hyperbolic angle generate invariant measures but with respect to different transformation groups. The hyperbolic functions, which take hyperbolic angle as argument, perform the role that circular functions play with the circular angle argument.
In 1688, long before abstract group theory, the squeeze mapping was described by Euclid Speidell in the terms of the day: "From a Square and an infinite company of Oblongs on a Superficies, each Equal to that square, how a curve is begotten which shall have the same properties or affections of any Hyperbola inscribed within a Right Angled Cone.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates. For one-dimensional motion, rapidities are additive whereas velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.
In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group. One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates.
In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation. The hyperbola xy = 1 is rectangular with a semi-major axis of , analogous to the magnitude of a circular angle corresponding to the area of a circular sector in a circle with radius .
This paper presents an accuracy-preserving p-weighted limiter for discontinuous Galerkin methods on one-dimensional and two-dimensional triangular grids. The p-weighted limiter is the extension of the second-order WENO limiter by Li et al. [W. Li, J. Pan a ...
2020
When laminar shear flows in large wall-bounded domains transition to turbulence, the flow exhibits spatio-temporally chaotic dynamics. Despite its chaotic dynamics, the flow may self-organize into characteristic spatially periodic patterns of unknown origi ...
In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely ch ...