A launch escape system (LES) or launch abort system (LAS) is a crew-safety system connected to a space capsule. It is used in the event of a critical emergency to quickly separate the capsule from its launch vehicle in case of an emergency requiring the abort of the launch, such as an impending explosion. The LES is typically controlled by a combination of automatic rocket failure detection, and a manual activation for the crew commander's use. The LES may be used while the launch vehicle is still on the launch pad, or during its ascent. Such systems are usually of three types:
A solid-fueled rocket, mounted above the capsule on a tower, which delivers a relatively large thrust for a brief period of time to send the capsule a safe distance away from the launch vehicle, at which point the capsule's parachute recovery system can be used for a safe landing on ground or water. The escape tower and rocket are jettisoned from the space vehicle in a normal flight at the point where it is either no longer needed, or cannot be effectively used to abort the flight. These have been used on the Mercury, Apollo, Soyuz, and Shenzhou capsules.
The crew are seated in seats that eject themselves (ejection seats) as used in military aircraft; each crew member returns to Earth with an individual parachute. Such systems are effective only in a limited range of altitudes and speeds. These have been used on the Vostok and Gemini capsules, and Space Shuttle Columbia during its testing phase.
Thrusters integrated in the capsule or its detachable service module having the same function as an escape tower, as in the case of Crew Dragon, Starliner and New Shepard.
The idea of using a rocket to remove the capsule from a space vehicle was developed by Maxime Faget in 1958. The system, using the tower on the top of the space capsule to house rockets, was first used on a test of the Project Mercury capsule in March 1959.
Historically, LES were used on American Mercury and Apollo spacecraft. Both designs used a solid-fuel rocket motor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
Explores space environmental constraints, including radiations, vibrations, shocks, and their impact on spacecraft mechanisms and human-induced vibrations.
A launch vehicle is typically a rocket-powered vehicle designed to carry a payload (a crewed spacecraft or satellites) from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling.
Falcon 9 is a partially reusable medium-lift launch vehicle that can carry cargo and crew into Earth orbit, designed, manufactured and launched by American aerospace company SpaceX. It can also be used as an expendable heavy-lift launch vehicle. The first Falcon 9 launch was in June 2010. The first Falcon 9 ISS commercial resupply mission to the ISS launched on 8 October 2012. In 2020 it became the first commercial rocket to ever launch humans to orbit and is currently the only such vehicle capable of doing so.
Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station. As of 2023, the Saturn V remains the only launch vehicle to carry humans beyond low Earth orbit (LEO).
, , , , ,
The PHANGS collaboration has been building a reference data set for the multiscale, multiphase study of star formation and the interstellar medium (ISM) in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolu ...
For the EU DEMO Tokamak, Electron Cyclotron (EC) launching systems for plasma heating and stabilization are under development. Various concepts for the optical system are currently studied of which the Mid Steering Antenna (MSA) with a steering mirror at a ...
Elsevier2020
The service sector is the most dominant sector in every developed economy today. The ability to develop and successfully launch new services is crucial for service organizations to stay competitive and to adapt to the ever-changing conditions of the enviro ...