Concept

Whitney immersion theorem

In differential topology, the Whitney immersion theorem (named after Hassler Whitney) states that for , any smooth -dimensional manifold (required also to be Hausdorff and second-countable) has a one-to-one immersion in Euclidean -space, and a (not necessarily one-to-one) immersion in -space. Similarly, every smooth -dimensional manifold can be immersed in the -dimensional sphere (this removes the constraint). The weak version, for , is due to transversality (general position, dimension counting): two m-dimensional manifolds in intersect generically in a 0-dimensional space. William S. Massey went on to prove that every n-dimensional manifold is cobordant to a manifold that immerses in where is the number of 1's that appear in the binary expansion of . In the same paper, Massey proved that for every n there is manifold (which happens to be a product of real projective spaces) that does not immerse in . The conjecture that every n-manifold immerses in became known as the immersion conjecture. This conjecture was eventually solved in the affirmative by .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.