Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and qualitative data. Fundamentally, two types of errors can occur: type I (finding a difference or correlation when none exists) and type II (finding no difference or correlation when one exists). Statistical conclusion validity concerns the qualities of the study that make these types of errors more likely. Statistical conclusion validity involves ensuring the use of adequate sampling procedures, appropriate statistical tests, and reliable measurement procedures.
The most common threats to statistical conclusion validity are:
Power is the probability of correctly rejecting the null hypothesis when it is false (inverse of the type II error rate). Experiments with low power have a higher probability of incorrectly accepting the null hypothesis—that is, committing a type II error and concluding that there is no effect when there actually is (I.e. there is real covariation between the cause and effect). Low power occurs when the sample size of the study is too small given other factors (small effect sizes, large group variability, unreliable measures, etc.).
Most statistical tests (particularly inferential statistics) involve assumptions about the data that make the analysis suitable for testing a hypothesis. Violating the assumptions of statistical tests can lead to incorrect inferences about the cause–effect relationship. The robustness of a test indicates how sensitive it is to violations. Violations of assumptions may make tests more or less likely to make type I or II errors.
Each hypothesis test involves a set risk of a type I error (the alpha rate). If a researcher searches or "dredges" through their data, testing many different hypotheses to find a significant effect, they are inflating their type I error rate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides an introduction to econometrics. The objective is to learn how to make valid (i.e., causal) inference from economic and social data. It explains the main estimators and present met
This seminar will provide a survey of the canonical literature in causal inference. At the end of this course, students will gain a broad understanding of the most important methodological concepts an
Internal validity is the extent to which a piece of evidence supports a claim about cause and effect, within the context of a particular study. It is one of the most important properties of scientific studies and is an important concept in reasoning about evidence more generally. Internal validity is determined by how well a study can rule out alternative explanations for its findings (usually, sources of systematic error or 'bias').
Construct validity concerns how well a set of indicators represent or reflect a concept that is not directly measurable. Construct validation is the accumulation of evidence to support the interpretation of what a measure reflects. Modern validity theory defines construct validity as the overarching concern of validity research, subsuming all other types of validity evidence such as content validity and criterion validity.
Validity is the main extent to which a concept, conclusion or measurement is well-founded and likely corresponds accurately to the real world. The word "valid" is derived from the Latin validus, meaning strong. The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.
Thermally stimulated current (TSC) is a widely used technique to assess trap states and extract their density, energy, and capture rate using analytical expressions. In many cases, the latter are derived from physical models pertaining to inorganic semicon ...
Background: Emotional processing has been studied in psychotherapy as a state-dependent, sequential process of change. So far, no studies have applied this conceptualisation of emotional processing to the assessments of emotion in daily life. This is parti ...
WILEY2021
The observation of cracks in normally functioning reinforced concrete (RC) structures is expected as the tensile strength of concrete is relatively low. However, one or more of those cracks can start to propagate with increasing crack openings, localizing ...