Concept

Statistical conclusion validity

Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and qualitative data. Fundamentally, two types of errors can occur: type I (finding a difference or correlation when none exists) and type II (finding no difference or correlation when one exists). Statistical conclusion validity concerns the qualities of the study that make these types of errors more likely. Statistical conclusion validity involves ensuring the use of adequate sampling procedures, appropriate statistical tests, and reliable measurement procedures. The most common threats to statistical conclusion validity are: Power is the probability of correctly rejecting the null hypothesis when it is false (inverse of the type II error rate). Experiments with low power have a higher probability of incorrectly accepting the null hypothesis—that is, committing a type II error and concluding that there is no effect when there actually is (I.e. there is real covariation between the cause and effect). Low power occurs when the sample size of the study is too small given other factors (small effect sizes, large group variability, unreliable measures, etc.). Most statistical tests (particularly inferential statistics) involve assumptions about the data that make the analysis suitable for testing a hypothesis. Violating the assumptions of statistical tests can lead to incorrect inferences about the cause–effect relationship. The robustness of a test indicates how sensitive it is to violations. Violations of assumptions may make tests more or less likely to make type I or II errors. Each hypothesis test involves a set risk of a type I error (the alpha rate). If a researcher searches or "dredges" through their data, testing many different hypotheses to find a significant effect, they are inflating their type I error rate.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MGT-581: Introduction to econometrics
The course provides an introduction to econometrics for economics and financial applications. The objective is to learn how to make valid (i.e., causal) inference from economic and social data.
ENG-606(a): Design of experiments (a) - Fall semester
The course teaches the acquisition of a methodology of designing experiments for optimal quality of the results and of the number of experiments.
MATH-614: Foundations of causal inference
This seminar will provide a survey of the canonical literature in causal inference. At the end of this course, students will gain a broad understanding of the most important methodological concepts an
Concepts associés (4)
Validité interne
La validité interne et la validité externe sont des concepts proposés par Donald Campbell dans les années 1950 pour estimer le degré de confiance que l'on peut avoir dans le résultat d'une expérience scientifique. Assurer une bonne validité interne, c'est concevoir, mettre en œuvre et exploiter une expérience de façon à « [limiter] autant que faire se peut les biais imputables aux instruments de collecte ou de traitement des données ».
Construct validity
Construct validity concerns how well a set of indicators represent or reflect a concept that is not directly measurable. Construct validation is the accumulation of evidence to support the interpretation of what a measure reflects. Modern validity theory defines construct validity as the overarching concern of validity research, subsuming all other types of validity evidence such as content validity and criterion validity.
Validity (statistics)
Validity is the main extent to which a concept, conclusion or measurement is well-founded and likely corresponds accurately to the real world. The word "valid" is derived from the Latin validus, meaning strong. The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.