**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# L (complexity)

Summary

In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.
Every non-trivial problem in L is complete under log-space reductions, so weaker reductions are required to identify meaningful notions of L-completeness, the most common being first-order reductions.
A 2004 result by Omer Reingold shows that USTCON, the problem of whether there exists a path between two vertices in a given undirected graph, is in L, showing that L = SL, since USTCON is SL-complete.
One consequence of this is a simple logical characterization of L: it contains precisely those languages expressible in first-order logic with an added commutative transitive closure operator (in graph theoretical terms, this turns every connected component into a clique). This result has application to database query languages: data complexity of a query is defined as the complexity of answering a fixed query considering the data size as the variable input. For this measure, queries against relational databases with complete information (having no notion of nulls) as expressed for instance in relational algebra are in L.
L is a subclass of NL, which is the class of languages decidable in logarithmic space on a nondeterministic Turing machine. A problem in NL may be transformed into a problem of reachability in a directed graph representing states and state transitions of the nondeterministic machine, and the logarithmic space bound implies that this graph has a polynomial number of vertices and edges, from which it follows that NL is contained in the complexity class P of problems solvable in deterministic polynomial time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (5)

Related concepts (23)

CS-524: Computational complexity

In computational complexity we study the computational resources needed to solve problems and understand the relation between different types of computation.
This course advances the students knowle

CS-459: Foundations of probabilistic proofs

Probabilistic proof systems (eg PCPs and IPs) have had a tremendous impact on theoretical computer science, as well as on real-world secure systems. They underlie delegation of computation protocols a

CS-250: Algorithms I

The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma

In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.

In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.

Related lectures (44)

Challenges in Bit-Precise Reasoning

Covers challenges in bit-precise reasoning, including SMT-COMP results, AIG, bit-blasting, Tseitin transformation, and complexity classes.

Algorithmes: introductionCS-119(a): Information, Computation, CommunicationMOOC: Information, Calcul, Communication: Introduction à la pensée informatique

Covers the basics of algorithms, problem-solving, and efficient resolution methods.

Promise Constraint Satisfaction and Width

Covers Promise Constraint Satisfaction Problems complexity, width, graph coloring, polymorphisms, and algorithms.