Summary
In probability theory and statistics, the zeta distribution is a discrete probability distribution. If X is a zeta-distributed random variable with parameter s, then the probability that X takes the integer value k is given by the probability mass function where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta distribution" are often used interchangeably. But while the Zeta distribution is a probability distribution by itself, it is not associated to the Zipf's law with same exponent. See also Yule–Simon distribution The Zeta distribution is defined for positive integers , and its probability mass function is given by where is the parameter, and is the Riemann zeta function. The cumulative distribution function is given by where is the generalized harmonic number The nth raw moment is defined as the expected value of Xn: The series on the right is just a series representation of the Riemann zeta function, but it only converges for values of that are greater than unity. Thus: The ratio of the zeta functions is well-defined, even for n > s − 1 because the series representation of the zeta function can be analytically continued. This does not change the fact that the moments are specified by the series itself, and are therefore undefined for large n. The moment generating function is defined as The series is just the definition of the polylogarithm, valid for so that Since this does not converge on an open interval containing , the moment generating function does not exist. ζ(1) is infinite as the harmonic series, and so the case when s = 1 is not meaningful. However, if A is any set of positive integers that has a density, i.e. if exists where N(A, n) is the number of members of A less than or equal to n, then is equal to that density.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.