In mathematical knot theory, a link is a collection of knots which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory. Implicit in this definition is that there is a trivial reference link, usually called the unlink, but the word is also sometimes used in context where there is no notion of a trivial link.
For example, a co-dimension 2 link in 3-dimensional space is a subspace of 3-dimensional Euclidean space (or often the 3-sphere) whose connected components are homeomorphic to circles.
The simplest nontrivial example of a link with more than one component is called the Hopf link, which consists of two circles (or unknots) linked together once. The circles in
the Borromean rings are collectively linked despite the fact that no two of them are directly linked. The Borromean rings thus form a Brunnian link and in fact constitute the simplest such link.
The notion of a link can be generalized in a number of ways.
Frequently the word link is used to describe any submanifold of the sphere diffeomorphic to a disjoint union of a finite number of spheres, .
In full generality, the word link is essentially the same as the word knot – the context is that one has a submanifold M of a manifold N (considered to be trivially embedded) and a non-trivial embedding of M in N, non-trivial in the sense that the 2nd embedding is not isotopic to the 1st. If M is disconnected, the embedding is called a link (or said to be linked). If M is connected, it is called a knot.
Tangle (mathematics)
While (1-dimensional) links are defined as embeddings of circles, it is often interesting and especially technically useful to consider embedded intervals (strands), as in braid theory.
Most generally, one can consider a tangle – a tangle is an embedding
of a (smooth) compact 1-manifold with boundary into the plane times the interval such that the boundary is embedded in
().
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A similar heuristic applies to hyperbolic links.
In mathematical knot theory, the Hopf link is the simplest nontrivial link with more than one component. It consists of two circles linked together exactly once, and is named after Heinz Hopf. A concrete model consists of two unit circles in perpendicular planes, each passing through the center of the other. This model minimizes the ropelength of the link and until 2002 the Hopf link was the only link whose ropelength was known. The convex hull of these two circles forms a shape called an oloid.
In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory. The trefoil knot is named after the three-leaf clover (or trefoil) plant. The trefoil knot can be defined as the curve obtained from the following parametric equations: The (2,3)-torus knot is also a trefoil knot.
Recently, triangle configuration based bivariate simplex splines (referred to as TCB-spline) have been introduced to the geometric computing community. TCB-splines retain many attractive theoretic properties of classical B-splines, such as partition of uni ...
We investigate properties of spatial graphs on the standard torus. It is known that nontrivial embeddings of planar graphs in the torus contain a nontrivial knot or a non-split link due to [2, 3]. Building on this and using the chirality of torus knots and ...
The growth in size and quality of observations of Geophysical Flows enables more detailed comparison between theoretical predictions and the real world. In this presentation, I give two examples where a "statistical look" on a classical problem can offer n ...