A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.Chemical reaction engineering is the branch of chemical engineering which deals with chemical reactors and their design, especially by application of chemical kinetics to industrial systems.
The most common basic types of chemical reactors are tanks (where the reactants mix in the whole volume) and pipes or tubes (for laminar flow reactors and plug flow reactors)
Both types can be used as continuous reactors or batch reactors, and either may accommodate one or more solids (reagents, catalysts, or inert materials), but the reagents and products are typically fluids (liquids or gases). Reactors in continuous processes are typically run at steady-state, whereas reactors in batch processes are necessarily operated in a transient state. When a reactor is brought into operation, either for the first time or after a shutdown, it is in a transient state, and key process variables change with time.
There are three idealised models used to estimate the most important process variables of different chemical reactors:
Batch reactor model,
Continuous stirred-tank reactor model (CSTR), and
Plug flow reactor model (PFR).
Many real-world reactors can be modeled as a combination of these basic types.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
Familiarization with practical aspects encountered in chemical reaction engineering.
A research project is carried out along twelve weeks where a close interaction is required between the different g
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
In chemical engineering and related fields, a unit operation is a basic step in a process. Unit operations involve a physical change or chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions. For example, in milk processing, the following unit operations are involved: homogenization, pasteurization, and packaging. These unit operations are connected to create the overall process.
The plug flow reactor model (PFR, sometimes called continuous tubular reactor, CTR, or piston flow reactors) is a model used to describe chemical reactions in continuous, flowing systems of cylindrical geometry. The PFR model is used to predict the behavior of chemical reactors of such design, so that key reactor variables, such as the dimensions of the reactor, can be estimated.
The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribution of the residence time in the set, which is known as residence time distribution (RTD), or in terms of its average, known as mean residence time. Residence time plays an important role in chemistry and especially in environmental science and pharmacology.
Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the s ...
2024
, , , ,
Autonomous nuclear reactor monitoring is a key aspect of the International Atomic Energy Agency’s strategy to ensure nonproliferation treaty compliance. From the rise of small modular reactor technology, decentralized nuclear reactor fleets may strain the ...
The combination of several interesting characteristics makes metal-organic frameworks (MOFs) a highly sought-after class of nanomaterials for a broad range of applications like gas storage and separation, catalysis, drug delivery, and so on. However, the e ...