The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribution of the residence time in the set, which is known as residence time distribution (RTD), or in terms of its average, known as mean residence time.
Residence time plays an important role in chemistry and especially in environmental science and pharmacology. Under the name lead time or waiting time it plays a central role respectively in supply chain management and queueing theory, where the material that flows is usually discrete instead of continuous.
The concept of residence time originated in models of chemical reactors. The first such model was an axial dispersion model by Irving Langmuir in 1908. This received little attention for 45 years; other models were developed such as the plug flow reactor model and the continuous stirred-tank reactor, and the concept of a washout function (representing the response to a sudden change in the input) was introduced. Then, in 1953, Peter Danckwerts resurrected the axial dispersion model and formulated the modern concept of residence time.
The time that a particle of fluid has been in a control volume (e.g. a reservoir) is known as its age. In general, each particle has a different age. The frequency of occurrence of the age in the set of all the particles that are located inside the control volume at time is quantified by means of the (internal) age distribution .
At the moment a particle leaves the control volume, its age is the total time that the particle has spent inside the control volume, which is known as its residence time. The frequency of occurrence of the age in the set of all the particles that are leaving the control volume at time is quantified by means of the residence time distribution, also known as exit age distribution .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
Familiarization with practical aspects encountered in chemical reaction engineering.
A research project is carried out along twelve weeks where a close interaction is required between the different g
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction.
The plug flow reactor model (PFR, sometimes called continuous tubular reactor, CTR, or piston flow reactors) is a model used to describe chemical reactions in continuous, flowing systems of cylindrical geometry. The PFR model is used to predict the behavior of chemical reactors of such design, so that key reactor variables, such as the dimensions of the reactor, can be estimated.
The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with water. It can also be simply explained as the depth below which the ground is saturated. The water table is the surface where the water pressure head is equal to the atmospheric pressure (where gauge pressure = 0). It may be visualized as the "surface" of the subsurface materials that are saturated with groundwater in a given vicinity.
Knudsen flow experiments and its interpretation in terms of adsorption/desorption kinetics as well as quantitative uptake on substrates of interest is presented together with the description of critical design parameters of the Knudsen Flow Reactor (KFR). ...
2022
This work demonstrated that consolidated bioprocessing is a promising concept for conversion of lignocellulose to ethanol at industrial scale. CBP offers great cost saving potential, is feasible to be operated continuously and may be scaled up due to exten ...
A key step in the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactor (SBR) according to the state-of- ...