Summary
A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make collimated light or parallel rays), or to cause the spatial cross section of the beam to become smaller (beam limiting device). The English physicist Henry Kater was the inventor of the floating collimator, which rendered a great service to practical astronomy. He reported about his invention in January 1825. In his report, Kater mentioned previous work in this area by Carl Friedrich Gauss and Friedrich Bessel. Collimated light In optics, a collimator may consist of a curved mirror or lens with some type of light source and/or an image at its focus. This can be used to replicate a target focused at infinity with little or no parallax. In lighting, collimators are typically designed using the principles of nonimaging optics. Optical collimators can be used to calibrate other optical devices, to check if all elements are aligned on the optical axis, to set elements at proper focus, or to align two or more devices such as binoculars or gun barrels and gunsights. A surveying camera may be collimated by setting its fiduciary markers so that they define the principal point, as in photogrammetry. Optical collimators are also used as gun sights in the collimator sight, which is a simple optical collimator with a cross hair or some other reticle at its focus. The viewer only sees an image of the reticle. They have to use it either with both eyes open and one eye looking into the collimator sight, with one eye open and moving the head to alternately see the sight and the target, or with one eye to partially see the sight and target at the same time. Adding a beam splitter allows the viewer to see the reticle and the field of view, making a reflector sight. Collimators may be used with laser diodes and CO2 cutting lasers. Proper collimation of a laser source with long enough coherence length can be verified with a shearing interferometer.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.