Surface epithelial-stromal tumors are a class of ovarian neoplasms that may be benign or malignant. Neoplasms in this group are thought to be derived from the ovarian surface epithelium (modified peritoneum) or from ectopic endometrial or Fallopian tube (tubal) tissue. Tumors of this type are also called ovarian adenocarcinoma. This group of tumors accounts for 90% to 95% of all cases of ovarian cancer; however is mainly only found in postmenopausal women with the exception of the United States where 7% of cases occur in women under the age of 40. Serum CA-125 is often elevated but is only 50% accurate so it is not a useful tumor marker to assess the progress of treatment. 75% of women with epithelial ovarian cancer are found within the advanced-stages; however younger patients are more likely to have better prognoses than older patients.
Epithelial-stromal tumors are classified on the basis of the epithelial cell type, the relative amounts of epithelium and stroma, the presence of papillary processes, and the location of the epithelial elements. Microscopic pathological features determine whether a surface epithelial-stromal tumor is benign, a borderline tumor, or malignant (evidence of malignancy and stromal invasion). Borderline tumors are of uncertain malignant potential.
This group consists of serous, mucinous, endometrioid, clear cell, and brenner (transitional cell) tumors, though there are a few mixed, undifferentiated and unclassified types.
These tumors vary in size from small and nearly imperceptible to large, filling the abdominal cavity.
Benign, borderline, and malignant types of serous tumors account for about 30% of all ovarian tumors.
75% are benign or of borderline malignancy, and 25% are malignant
The malignant form of this tumor, serous cystadenocarcinoma, accounts for approximately 40% of all carcinomas of the ovary and are the most common malignant ovarian tumors.
Benign and borderline tumors are most common between the ages of 20 and 50 years.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Ovarian cancer is a cancerous tumor of an ovary. It may originate from the ovary itself or more commonly from communicating nearby structures such as fallopian tubes or the inner lining of the abdomen. The ovary is made up of three different cell types including epithelial cells, germ cells, and stromal cells. When these cells become abnormal, they have the ability to divide and form tumors. These cells can also invade or spread to other parts of the body. When this process begins, there may be no or only vague symptoms.
Endometrial cancer is a cancer that arises from the endometrium (the lining of the uterus or womb). It is the result of the abnormal growth of cells that have the ability to invade or spread to other parts of the body. The first sign is most often vaginal bleeding not associated with a menstrual period. Other symptoms include pain with urination, pain during sexual intercourse, or pelvic pain. Endometrial cancer occurs most commonly after menopause. Approximately 40% of cases are related to obesity.
Vimentin is a main type 3 intermediate filament protein. It seems that abnormal expression of vimentin is contributed to the appearance of the aggressive feature of cancer cells. So that it has been reported that malignancy and epithelial-mesenchymal trans ...
SPRINGER2023
Background Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic c ...
Photodynamic therapy (PDT) is an interesting and promising approach to tackle a broad spectrum of cancer. With the combination of a photosensitizer, light and oxygen, PDT achieves a unique selectivity by the production of localized reactive oxygen species ...