In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics. Suppose has a normal distribution with mean and variance and lies within the interval . Then conditional on has a truncated normal distribution. Its probability density function, , for , is given by and by otherwise. Here, is the probability density function of the standard normal distribution and is its cumulative distribution function By definition, if , then , and similarly, if , then . The above formulae show that when the scale parameter of the truncated normal distribution is allowed to assume negative values. The parameter is in this case imaginary, but the function is nevertheless real, positive, and normalizable. The scale parameter of the untruncated normal distribution must be positive because the distribution would not be normalizable otherwise. The doubly truncated normal distribution, on the other hand, can in principle have a negative scale parameter (which is different from the variance, see summary formulae), because no such integrability problems arise on a bounded domain. In this case the distribution cannot be interpreted as an untruncated normal conditional on , of course, but can still be interpreted as a maximum-entropy distribution with first and second moments as constraints, and has an additional peculiar feature: it presents two local maxima instead of one, located at and . The truncated normal is the maximum entropy probability distribution for a fixed mean and variance with the random variate X constrained to be in the interval [a,b]. Truncated normals with fixed support form an exponential family. Nielsen reported closed-form formula for calculating the Kullback-Leibler divergence and the Bhattacharyya distance between two truncated normal distributions with the support of the first distribution nested into the support of the second distribution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
FIN-619: Financial Econometrics and Machine Learning
This course consists of three parts: an introduction to financial time series data characteristics and analysis, a discussion on econometrics techniques (eg, GARCH models, cointegration, extreme value
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
Show more
Related publications (22)

Valence can control the nonexponential viscoelastic relaxation of multivalent reversible gels

Hugo Camille Valentin Le Roy

Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
Amer Assoc Advancement Science2024

Robust discrete choice models with t-distributed kernel errors

Michel Bierlaire, Thomas Gasos, Prateek Bansal

Outliers in discrete choice response data may result from misclassification and misreporting of the response variable and from choice behaviour that is inconsistent with modelling assumptions (e.g. random utility maximisation). In the presence of outliers, ...
2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.