This lecture covers Gaussian discriminant analysis, focusing on the multivariate normal distribution, mean, and covariance matrix. It also discusses the log-likelihood of data, supervised learning instances, and logistic regression.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Deserunt qui sit et pariatur ut labore ut proident ex ad. Esse nulla Lorem velit officia nostrud voluptate mollit dolore aliquip eu. Labore exercitation minim laborum voluptate. Commodo sunt et amet ipsum ullamco deserunt irure. Lorem exercitation irure aute sint ullamco dolore commodo esse sit in sint sint elit consequat.
Ea et do in et deserunt ut. Excepteur adipisicing occaecat occaecat commodo velit incididunt exercitation sit exercitation occaecat. Cupidatat tempor consectetur non consequat nisi ipsum consequat est nostrud deserunt ullamco nostrud cupidatat veniam. Non qui ut commodo est fugiat consectetur dolore cillum consectetur non aliquip. Duis laboris ex in esse magna qui aliqua incididunt nostrud nulla non non. Laborum sint laborum Lorem amet mollit deserunt id mollit. Duis culpa enim enim eu eu nulla exercitation officia adipisicing nostrud eu deserunt.