Concept

Level of detail (computer graphics)

Summary
In computer graphics, level of detail (LOD) refers to the complexity of a 3D model representation. LOD can be decreased as the model moves away from the viewer or according to other metrics such as object importance, viewpoint-relative speed or position. LOD techniques increase the efficiency of rendering by decreasing the workload on graphics pipeline stages, usually vertex transformations. The reduced visual quality of the model is often unnoticed because of the small effect on object appearance when distant or moving fast. Although most of the time LOD is applied to geometry detail only, the basic concept can be generalized. Recently, LOD techniques also included shader management to keep control of pixel complexity. A form of level of detail management has been applied to texture maps for years, under the name of mipmapping, also providing higher rendering quality. It is commonplace to say that "an object has been LOD-ed" when the object is simplified by the underlying LOD-ing algorithm as well as a 3D modeler manually creating LOD models. The origin of all the LOD algorithms for 3D computer graphics can be traced back to an article by James H. Clark in the October 1976 issue of Communications of the ACM. At the time, computers were monolithic and rare, and graphics were being driven by researchers. The hardware itself was completely different, both architecturally and performance-wise. As such, many differences could be observed with regard to today's algorithms but also many common points. The original algorithm presented a much more generic approach to what will be discussed here. After introducing some available algorithms for geometry management, it is stated that most fruitful gains came from "...structuring the environments being rendered", allowing to exploit faster transformations and clipping operations. The same environment structuring is now proposed as a way to control varying detail thus avoiding unnecessary computations, yet delivering adequate visual quality: For example, a dodecahedron looks like a sphere from a sufficiently large distance and thus can be used to model it so long as it is viewed from that or a greater distance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.