Summary
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming. Unlike Reed-Kellogg sentence diagrams used for teaching grammar, parse trees do not use distinct symbol shapes for different types of constituents. Parse trees are usually constructed based on either the constituency relation of constituency grammars (phrase structure grammars) or the dependency relation of dependency grammars. Parse trees may be generated for sentences in natural languages (see natural language processing), as well as during processing of computer languages, such as programming languages. A related concept is that of phrase marker or P-marker, as used in transformational generative grammar. A phrase marker is a linguistic expression marked as to its phrase structure. This may be presented in the form of a tree, or as a bracketed expression. Phrase markers are generated by applying phrase structure rules, and themselves are subject to further transformational rules. A set of possible parse trees for a syntactically ambiguous sentence is called a "parse forest." A parse tree is made up of nodes and branches. In the picture the parse tree is the entire structure, starting from S and ending in each of the leaf nodes (John, ball, the, hit). In a parse tree, each node is either a root node, a branch node, or a leaf node. In the above example, S is a root node, NP and VP are branch nodes, while John, ball, the, and hit are all leaf nodes. Nodes can also be referred to as parent nodes and child nodes. A parent node is one which has at least one other node linked by a branch under it. In the example, S is a parent of both NP and VP.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (41)
Parse tree
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming.
Parsing
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term parsing comes from Latin pars (orationis), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams.
Dependency grammar
Dependency grammar (DG) is a class of modern grammatical theories that are all based on the dependency relation (as opposed to the constituency relation of phrase structure) and that can be traced back primarily to the work of Lucien Tesnière. Dependency is the notion that linguistic units, e.g. words, are connected to each other by directed links. The (finite) verb is taken to be the structural center of clause structure. All other syntactic units (words) are either directly or indirectly connected to the verb in terms of the directed links, which are called dependencies.
Show more
Related courses (4)
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
EE-608: Deep Learning For Natural Language Processing
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
Show more
Related lectures (53)
Graph Pattern Matching: Work-sharing
Explores optimizing graph pattern matching with work-sharing techniques and context-aware parallelization for pattern mining at scale.
Syntax Trees: Parse vs AST
Explains syntax trees, parse vs AST, while language syntax, AST classes, and grammar ambiguities.
Syntactic Parsing: Dependency Structure
Covers syntactic structure, dependency parsing, and neural network transition-based parsing, highlighting the importance of dependency structure in linguistic analysis.
Show more