Summary
In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for . However, because the oracle machine may query the oracle a large number of times, the resulting algorithm may require more time asymptotically than either the algorithm for or the oracle machine computing . A Turing reduction in which the oracle machine runs in polynomial time is known as a Cook reduction. The first formal definition of relative computability, then called relative reducibility, was given by Alan Turing in 1939 in terms of oracle machines. Later in 1943 and 1952 Stephen Kleene defined an equivalent concept in terms of recursive functions. In 1944 Emil Post used the term "Turing reducibility" to refer to the concept. Given two sets of natural numbers, we say is Turing reducible to and write if and only if there is an oracle machine that computes the characteristic function of A when run with oracle B. In this case, we also say A is B-recursive and B-computable. If there is an oracle machine that, when run with oracle B, computes a partial function with domain A, then A is said to be B-recursively enumerable and B-computably enumerable. We say is Turing equivalent to and write if both and The equivalence classes of Turing equivalent sets are called Turing degrees. The Turing degree of a set is written . Given a set , a set is called Turing hard for if for all . If additionally then is called Turing complete for . Turing completeness, as just defined above, corresponds only partially to Turing completeness in the sense of computational universality.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.